sklearn.model_selection
.fit_grid_point¶
-
sklearn.model_selection.
fit_grid_point
(X, y, estimator, parameters, train, test, scorer, verbose, error_score='raise-deprecating', **fit_params)[source]¶ Run fit on one set of parameters.
Parameters: - X : array-like, sparse matrix or list
Input data.
- y : array-like or None
Targets for input data.
- estimator : estimator object
A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a
score
function, orscoring
must be passed.- parameters : dict
Parameters to be set on estimator for this grid point.
- train : ndarray, dtype int or bool
Boolean mask or indices for training set.
- test : ndarray, dtype int or bool
Boolean mask or indices for test set.
- scorer : callable or None
The scorer callable object / function must have its signature as
scorer(estimator, X, y)
.If
None
the estimator’s default scorer is used.- verbose : int
Verbosity level.
- **fit_params : kwargs
Additional parameter passed to the fit function of the estimator.
- error_score : ‘raise’ or numeric
Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Default is ‘raise’ but from version 0.22 it will change to np.nan.
Returns: - score : float
Score of this parameter setting on given training / test split.
- parameters : dict
The parameters that have been evaluated.
- n_samples_test : int
Number of test samples in this split.