sklearn.preprocessing
.normalize¶
-
sklearn.preprocessing.
normalize
(X, norm='l2', axis=1, copy=True, return_norm=False)[source]¶ Scale input vectors individually to unit norm (vector length).
Read more in the User Guide.
Parameters: - X : {array-like, sparse matrix}, shape [n_samples, n_features]
The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy.
- norm : ‘l1’, ‘l2’, or ‘max’, optional (‘l2’ by default)
The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0).
- axis : 0 or 1, optional (1 by default)
axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature.
- copy : boolean, optional, default True
set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1).
- return_norm : boolean, default False
whether to return the computed norms
Returns: - X : {array-like, sparse matrix}, shape [n_samples, n_features]
Normalized input X.
- norms : array, shape [n_samples] if axis=1 else [n_features]
An array of norms along given axis for X. When X is sparse, a NotImplementedError will be raised for norm ‘l1’ or ‘l2’.
See also
Normalizer
- Performs normalization using the
Transformer
API (e.g. as part of a preprocessingsklearn.pipeline.Pipeline
).
Notes
For a comparison of the different scalers, transformers, and normalizers, see examples/preprocessing/plot_all_scaling.py.