sklearn.utils
.Memory¶
Warning
DEPRECATED
-
class
sklearn.utils.
Memory
(**kwargs)[source]¶ Attributes: - cachedir
Methods
cache
([func, ignore, verbose, mmap_mode])Decorates the given function func to only compute its return value for input arguments not cached on disk. clear
([warn])Erase the complete cache directory. eval
(func, *args, **kwargs)Eval function func with arguments *args and **kwargs, in the context of the memory. format
(obj[, indent])Return the formatted representation of the object. reduce_size
()Remove cache elements to make cache size fit in bytes_limit
.debug warn -
__init__
(**kwargs)[source]¶ DEPRECATED: deprecated in version 0.20.1 to be removed in version 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib.
-
cache
(func=None, ignore=None, verbose=None, mmap_mode=False)[source]¶ Decorates the given function func to only compute its return value for input arguments not cached on disk.
Parameters: - func: callable, optional
The function to be decorated
- ignore: list of strings
A list of arguments name to ignore in the hashing
- verbose: integer, optional
The verbosity mode of the function. By default that of the memory object is used.
- mmap_mode: {None, ‘r+’, ‘r’, ‘w+’, ‘c’}, optional
The memmapping mode used when loading from cache numpy arrays. See numpy.load for the meaning of the arguments. By default that of the memory object is used.
Returns: - decorated_func: MemorizedFunc object
The returned object is a MemorizedFunc object, that is callable (behaves like a function), but offers extra methods for cache lookup and management. See the documentation for
joblib.memory.MemorizedFunc
.