sklearn.utils
.as_float_array¶
-
sklearn.utils.
as_float_array
(X, copy=True, force_all_finite=True)[source]¶ Converts an array-like to an array of floats.
The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy or modify the argument depending on the argument copy.
Parameters: - X : {array-like, sparse matrix}
- copy : bool, optional
If True, a copy of X will be created. If False, a copy may still be returned if X’s dtype is not a floating point type.
- force_all_finite : boolean or ‘allow-nan’, (default=True)
Whether to raise an error on np.inf and np.nan in X. The possibilities are:
- True: Force all values of X to be finite.
- False: accept both np.inf and np.nan in X.
- ‘allow-nan’: accept only np.nan values in X. Values cannot be infinite.
New in version 0.20:
force_all_finite
accepts the string'allow-nan'
.
Returns: - XT : {array, sparse matrix}
An array of type np.float