sklearn.utils.extmath
.randomized_range_finder¶
-
sklearn.utils.extmath.
randomized_range_finder
(A, size, n_iter, power_iteration_normalizer='auto', random_state=None)[source]¶ Computes an orthonormal matrix whose range approximates the range of A.
Parameters: - A : 2D array
The input data matrix
- size : integer
Size of the return array
- n_iter : integer
Number of power iterations used to stabilize the result
- power_iteration_normalizer : ‘auto’ (default), ‘QR’, ‘LU’, ‘none’
Whether the power iterations are normalized with step-by-step QR factorization (the slowest but most accurate), ‘none’ (the fastest but numerically unstable when n_iter is large, e.g. typically 5 or larger), or ‘LU’ factorization (numerically stable but can lose slightly in accuracy). The ‘auto’ mode applies no normalization if n_iter <= 2 and switches to LU otherwise.
New in version 0.18.
- random_state : int, RandomState instance or None, optional (default=None)
The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
Returns: - Q : 2D array
A (size x size) projection matrix, the range of which approximates well the range of the input matrix A.
Notes
Follows Algorithm 4.3 of Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) https://arxiv.org/pdf/0909.4061.pdf
An implementation of a randomized algorithm for principal component analysis A. Szlam et al. 2014