sklearn.utils.validation
.check_is_fitted¶
-
sklearn.utils.validation.
check_is_fitted
(estimator, attributes, msg=None, all_or_any=<built-in function all>)[source]¶ Perform is_fitted validation for estimator.
Checks if the estimator is fitted by verifying the presence of “all_or_any” of the passed attributes and raises a NotFittedError with the given message.
Parameters: - estimator : estimator instance.
estimator instance for which the check is performed.
- attributes : attribute name(s) given as string or a list/tuple of strings
- Eg.:
["coef_", "estimator_", ...], "coef_"
- msg : string
The default error message is, “This %(name)s instance is not fitted yet. Call ‘fit’ with appropriate arguments before using this method.”
For custom messages if “%(name)s” is present in the message string, it is substituted for the estimator name.
Eg. : “Estimator, %(name)s, must be fitted before sparsifying”.
- all_or_any : callable, {all, any}, default all
Specify whether all or any of the given attributes must exist.
Returns: - None
Raises: - NotFittedError
If the attributes are not found.