"""
AskHandlers related to order relations: positive, negative, etc.
"""
from __future__ import print_function, division
from sympy.assumptions import Q, ask
from sympy.assumptions.handlers import CommonHandler
from sympy.core.logic import fuzzy_not, fuzzy_and, fuzzy_or
[docs]class AskNegativeHandler(CommonHandler):
"""
This is called by ask() when key='negative'
Test that an expression is less (strict) than zero.
Examples
========
>>> from sympy import ask, Q, pi
>>> ask(Q.negative(pi+1)) # this calls AskNegativeHandler.Add
False
>>> ask(Q.negative(pi**2)) # this calls AskNegativeHandler.Pow
False
"""
@staticmethod
def Expr(expr, assumptions):
return expr.is_negative
@staticmethod
def _number(expr, assumptions):
r, i = expr.as_real_imag()
# If the imaginary part can symbolically be shown to be zero then
# we just evaluate the real part; otherwise we evaluate the imaginary
# part to see if it actually evaluates to zero and if it does then
# we make the comparison between the real part and zero.
if not i:
r = r.evalf(2)
if r._prec != 1:
return r < 0
else:
i = i.evalf(2)
if i._prec != 1:
if i != 0:
return False
r = r.evalf(2)
if r._prec != 1:
return r < 0
@staticmethod
def Basic(expr, assumptions):
if expr.is_number:
return AskNegativeHandler._number(expr, assumptions)
[docs] @staticmethod
def Add(expr, assumptions):
"""
Positive + Positive -> Positive,
Negative + Negative -> Negative
"""
if expr.is_number:
return AskNegativeHandler._number(expr, assumptions)
r = ask(Q.real(expr), assumptions)
if r is not True:
return r
nonpos = 0
for arg in expr.args:
if ask(Q.negative(arg), assumptions) is not True:
if ask(Q.positive(arg), assumptions) is False:
nonpos += 1
else:
break
else:
if nonpos < len(expr.args):
return True
@staticmethod
def Mul(expr, assumptions):
if expr.is_number:
return AskNegativeHandler._number(expr, assumptions)
result = None
for arg in expr.args:
if result is None:
result = False
if ask(Q.negative(arg), assumptions):
result = not result
elif ask(Q.positive(arg), assumptions):
pass
else:
return
return result
[docs] @staticmethod
def Pow(expr, assumptions):
"""
Real ** Even -> NonNegative
Real ** Odd -> same_as_base
NonNegative ** Positive -> NonNegative
"""
if expr.is_number:
return AskNegativeHandler._number(expr, assumptions)
if ask(Q.real(expr.base), assumptions):
if ask(Q.positive(expr.base), assumptions):
if ask(Q.real(expr.exp), assumptions):
return False
if ask(Q.even(expr.exp), assumptions):
return False
if ask(Q.odd(expr.exp), assumptions):
return ask(Q.negative(expr.base), assumptions)
ImaginaryUnit, Abs = [staticmethod(CommonHandler.AlwaysFalse)]*2
@staticmethod
def exp(expr, assumptions):
if ask(Q.real(expr.args[0]), assumptions):
return False
class AskNonNegativeHandler(CommonHandler):
@staticmethod
def Expr(expr, assumptions):
return expr.is_nonnegative
@staticmethod
def Basic(expr, assumptions):
if expr.is_number:
notnegative = fuzzy_not(AskNegativeHandler._number(expr, assumptions))
if notnegative:
return ask(Q.real(expr), assumptions)
else:
return notnegative
[docs]class AskNonZeroHandler(CommonHandler):
"""
Handler for key 'zero'
Test that an expression is not identically zero
"""
@staticmethod
def Expr(expr, assumptions):
return expr.is_nonzero
@staticmethod
def Basic(expr, assumptions):
if ask(Q.real(expr)) is False:
return False
if expr.is_number:
# if there are no symbols just evalf
i = expr.evalf(2)
def nonz(i):
if i._prec != 1:
return i != 0
return fuzzy_or(nonz(i) for i in i.as_real_imag())
@staticmethod
def Add(expr, assumptions):
if all(ask(Q.positive(x), assumptions) for x in expr.args) \
or all(ask(Q.negative(x), assumptions) for x in expr.args):
return True
@staticmethod
def Mul(expr, assumptions):
for arg in expr.args:
result = ask(Q.nonzero(arg), assumptions)
if result:
continue
return result
return True
@staticmethod
def Pow(expr, assumptions):
return ask(Q.nonzero(expr.base), assumptions)
NaN = staticmethod(CommonHandler.AlwaysTrue)
@staticmethod
def Abs(expr, assumptions):
return ask(Q.nonzero(expr.args[0]), assumptions)
class AskZeroHandler(CommonHandler):
@staticmethod
def Expr(expr, assumptions):
return expr.is_zero
@staticmethod
def Basic(expr, assumptions):
return fuzzy_and([fuzzy_not(ask(Q.nonzero(expr), assumptions)),
ask(Q.real(expr), assumptions)])
@staticmethod
def Mul(expr, assumptions):
# TODO: This should be deducible from the nonzero handler
return fuzzy_or(ask(Q.zero(arg), assumptions) for arg in expr.args)
class AskNonPositiveHandler(CommonHandler):
@staticmethod
def Expr(expr, assumptions):
return expr.is_nonpositive
@staticmethod
def Basic(expr, assumptions):
if expr.is_number:
notpositive = fuzzy_not(AskPositiveHandler._number(expr, assumptions))
if notpositive:
return ask(Q.real(expr), assumptions)
else:
return notpositive
[docs]class AskPositiveHandler(CommonHandler):
"""
Handler for key 'positive'
Test that an expression is greater (strict) than zero
"""
@staticmethod
def Expr(expr, assumptions):
return expr.is_positive
@staticmethod
def _number(expr, assumptions):
r, i = expr.as_real_imag()
# If the imaginary part can symbolically be shown to be zero then
# we just evaluate the real part; otherwise we evaluate the imaginary
# part to see if it actually evaluates to zero and if it does then
# we make the comparison between the real part and zero.
if not i:
r = r.evalf(2)
if r._prec != 1:
return r > 0
else:
i = i.evalf(2)
if i._prec != 1:
if i != 0:
return False
r = r.evalf(2)
if r._prec != 1:
return r > 0
@staticmethod
def Basic(expr, assumptions):
if expr.is_number:
return AskPositiveHandler._number(expr, assumptions)
@staticmethod
def Mul(expr, assumptions):
if expr.is_number:
return AskPositiveHandler._number(expr, assumptions)
result = True
for arg in expr.args:
if ask(Q.positive(arg), assumptions):
continue
elif ask(Q.negative(arg), assumptions):
result = result ^ True
else:
return
return result
@staticmethod
def Add(expr, assumptions):
if expr.is_number:
return AskPositiveHandler._number(expr, assumptions)
r = ask(Q.real(expr), assumptions)
if r is not True:
return r
nonneg = 0
for arg in expr.args:
if ask(Q.positive(arg), assumptions) is not True:
if ask(Q.negative(arg), assumptions) is False:
nonneg += 1
else:
break
else:
if nonneg < len(expr.args):
return True
@staticmethod
def Pow(expr, assumptions):
if expr.is_number:
return AskPositiveHandler._number(expr, assumptions)
if ask(Q.positive(expr.base), assumptions):
if ask(Q.real(expr.exp), assumptions):
return True
if ask(Q.negative(expr.base), assumptions):
if ask(Q.even(expr.exp), assumptions):
return True
if ask(Q.odd(expr.exp), assumptions):
return False
@staticmethod
def exp(expr, assumptions):
if ask(Q.real(expr.args[0]), assumptions):
return True
if ask(Q.imaginary(expr.args[0]), assumptions):
from sympy import pi, I
return ask(Q.even(expr.args[0]/(I*pi)), assumptions)
@staticmethod
def log(expr, assumptions):
r = ask(Q.real(expr.args[0]), assumptions)
if r is not True:
return r
if ask(Q.positive(expr.args[0] - 1), assumptions):
return True
if ask(Q.negative(expr.args[0] - 1), assumptions):
return False
@staticmethod
def factorial(expr, assumptions):
x = expr.args[0]
if ask(Q.integer(x) & Q.positive(x), assumptions):
return True
ImaginaryUnit = staticmethod(CommonHandler.AlwaysFalse)
@staticmethod
def Abs(expr, assumptions):
return ask(Q.nonzero(expr), assumptions)
@staticmethod
def Trace(expr, assumptions):
if ask(Q.positive_definite(expr.arg), assumptions):
return True
@staticmethod
def Determinant(expr, assumptions):
if ask(Q.positive_definite(expr.arg), assumptions):
return True
@staticmethod
def MatrixElement(expr, assumptions):
if (expr.i == expr.j
and ask(Q.positive_definite(expr.parent), assumptions)):
return True
@staticmethod
def atan(expr, assumptions):
return ask(Q.positive(expr.args[0]), assumptions)
@staticmethod
def asin(expr, assumptions):
x = expr.args[0]
if ask(Q.positive(x) & Q.nonpositive(x - 1), assumptions):
return True
if ask(Q.negative(x) & Q.nonnegative(x + 1), assumptions):
return False
@staticmethod
def acos(expr, assumptions):
x = expr.args[0]
if ask(Q.nonpositive(x - 1) & Q.nonnegative(x + 1), assumptions):
return True
@staticmethod
def acot(expr, assumptions):
return ask(Q.real(expr.args[0]), assumptions)