Source code for sympy.discrete.convolutions

"""
Convolution (using **FFT**, **NTT**, **FWHT**), Subset Convolution,
Covering Product, Intersecting Product
"""
from __future__ import print_function, division

from sympy.core import S, sympify
from sympy.core.compatibility import range, as_int, iterable
from sympy.core.function import expand_mul
from sympy.discrete.transforms import (
    fft, ifft, ntt, intt, fwht, ifwht,
    mobius_transform, inverse_mobius_transform)


[docs]def convolution(a, b, cycle=0, dps=None, prime=None, dyadic=None, subset=None): """ Performs convolution by determining the type of desired convolution using hints. Exactly one of ``dps``, ``prime``, ``dyadic``, ``subset`` arguments should be specified explicitly for identifying the type of convolution, and the argument ``cycle`` can be specified optionally. For the default arguments, linear convolution is performed using **FFT**. Parameters ========== a, b : iterables The sequences for which convolution is performed. cycle : Integer Specifies the length for doing cyclic convolution. dps : Integer Specifies the number of decimal digits for precision for performing **FFT** on the sequence. prime : Integer Prime modulus of the form `(m 2^k + 1)` to be used for performing **NTT** on the sequence. dyadic : bool Identifies the convolution type as dyadic (*bitwise-XOR*) convolution, which is performed using **FWHT**. subset : bool Identifies the convolution type as subset convolution. Examples ======== >>> from sympy import convolution, symbols, S, I >>> u, v, w, x, y, z = symbols('u v w x y z') >>> convolution([1 + 2*I, 4 + 3*I], [S(5)/4, 6], dps=3) [1.25 + 2.5*I, 11.0 + 15.8*I, 24.0 + 18.0*I] >>> convolution([1, 2, 3], [4, 5, 6], cycle=3) [31, 31, 28] >>> convolution([111, 777], [888, 444], prime=19*2**10 + 1) [1283, 19351, 14219] >>> convolution([111, 777], [888, 444], prime=19*2**10 + 1, cycle=2) [15502, 19351] >>> convolution([u, v], [x, y, z], dyadic=True) [u*x + v*y, u*y + v*x, u*z, v*z] >>> convolution([u, v], [x, y, z], dyadic=True, cycle=2) [u*x + u*z + v*y, u*y + v*x + v*z] >>> convolution([u, v, w], [x, y, z], subset=True) [u*x, u*y + v*x, u*z + w*x, v*z + w*y] >>> convolution([u, v, w], [x, y, z], subset=True, cycle=3) [u*x + v*z + w*y, u*y + v*x, u*z + w*x] """ c = as_int(cycle) if c < 0: raise ValueError("The length for cyclic convolution " "must be non-negative") dyadic = True if dyadic else None subset = True if subset else None if sum(x is not None for x in (prime, dps, dyadic, subset)) > 1: raise TypeError("Ambiguity in determining the type of convolution") if prime is not None: ls = convolution_ntt(a, b, prime=prime) return ls if not c else [sum(ls[i::c]) % prime for i in range(c)] if dyadic: ls = convolution_fwht(a, b) elif subset: ls = convolution_subset(a, b) else: ls = convolution_fft(a, b, dps=dps) return ls if not c else [sum(ls[i::c]) for i in range(c)]
#----------------------------------------------------------------------------# # # # Convolution for Complex domain # # # #----------------------------------------------------------------------------#
[docs]def convolution_fft(a, b, dps=None): """ Performs linear convolution using Fast Fourier Transform. Parameters ========== a, b : iterables The sequences for which convolution is performed. dps : Integer Specifies the number of decimal digits for precision. Examples ======== >>> from sympy import S, I >>> from sympy.discrete.convolutions import convolution_fft >>> convolution_fft([2, 3], [4, 5]) [8, 22, 15] >>> convolution_fft([2, 5], [6, 7, 3]) [12, 44, 41, 15] >>> convolution_fft([1 + 2*I, 4 + 3*I], [S(5)/4, 6]) [5/4 + 5*I/2, 11 + 63*I/4, 24 + 18*I] References ========== .. [1] https://en.wikipedia.org/wiki/Convolution_theorem .. [2] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29 """ a, b = a[:], b[:] n = m = len(a) + len(b) - 1 # convolution size if n > 0 and n&(n - 1): # not a power of 2 n = 2**n.bit_length() # padding with zeros a += [S.Zero]*(n - len(a)) b += [S.Zero]*(n - len(b)) a, b = fft(a, dps), fft(b, dps) a = [expand_mul(x*y) for x, y in zip(a, b)] a = ifft(a, dps)[:m] return a
#----------------------------------------------------------------------------# # # # Convolution for GF(p) # # # #----------------------------------------------------------------------------#
[docs]def convolution_ntt(a, b, prime): """ Performs linear convolution using Number Theoretic Transform. Parameters ========== a, b : iterables The sequences for which convolution is performed. prime : Integer Prime modulus of the form `(m 2^k + 1)` to be used for performing **NTT** on the sequence. Examples ======== >>> from sympy.discrete.convolutions import convolution_ntt >>> convolution_ntt([2, 3], [4, 5], prime=19*2**10 + 1) [8, 22, 15] >>> convolution_ntt([2, 5], [6, 7, 3], prime=19*2**10 + 1) [12, 44, 41, 15] >>> convolution_ntt([333, 555], [222, 666], prime=19*2**10 + 1) [15555, 14219, 19404] References ========== .. [1] https://en.wikipedia.org/wiki/Convolution_theorem .. [2] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29 """ a, b, p = a[:], b[:], as_int(prime) n = m = len(a) + len(b) - 1 # convolution size if n > 0 and n&(n - 1): # not a power of 2 n = 2**n.bit_length() # padding with zeros a += [0]*(n - len(a)) b += [0]*(n - len(b)) a, b = ntt(a, p), ntt(b, p) a = [x*y % p for x, y in zip(a, b)] a = intt(a, p)[:m] return a
#----------------------------------------------------------------------------# # # # Convolution for 2**n-group # # # #----------------------------------------------------------------------------#
[docs]def convolution_fwht(a, b): """ Performs dyadic (*bitwise-XOR*) convolution using Fast Walsh Hadamard Transform. The convolution is automatically padded to the right with zeros, as the *radix-2 FWHT* requires the number of sample points to be a power of 2. Parameters ========== a, b : iterables The sequences for which convolution is performed. Examples ======== >>> from sympy import symbols, S, I >>> from sympy.discrete.convolutions import convolution_fwht >>> u, v, x, y = symbols('u v x y') >>> convolution_fwht([u, v], [x, y]) [u*x + v*y, u*y + v*x] >>> convolution_fwht([2, 3], [4, 5]) [23, 22] >>> convolution_fwht([2, 5 + 4*I, 7], [6*I, 7, 3 + 4*I]) [56 + 68*I, -10 + 30*I, 6 + 50*I, 48 + 32*I] >>> convolution_fwht([S(33)/7, S(55)/6, S(7)/4], [S(2)/3, 5]) [2057/42, 1870/63, 7/6, 35/4] References ========== .. [1] https://www.radioeng.cz/fulltexts/2002/02_03_40_42.pdf .. [2] https://en.wikipedia.org/wiki/Hadamard_transform """ if not a or not b: return [] a, b = a[:], b[:] n = max(len(a), len(b)) if n&(n - 1): # not a power of 2 n = 2**n.bit_length() # padding with zeros a += [S.Zero]*(n - len(a)) b += [S.Zero]*(n - len(b)) a, b = fwht(a), fwht(b) a = [expand_mul(x*y) for x, y in zip(a, b)] a = ifwht(a) return a
#----------------------------------------------------------------------------# # # # Subset Convolution # # # #----------------------------------------------------------------------------#
[docs]def convolution_subset(a, b): """ Performs Subset Convolution of given sequences. The indices of each argument, considered as bit strings, correspond to subsets of a finite set. The sequence is automatically padded to the right with zeros, as the definition of subset based on bitmasks (indices) requires the size of sequence to be a power of 2. Parameters ========== a, b : iterables The sequences for which convolution is performed. Examples ======== >>> from sympy import symbols, S, I >>> from sympy.discrete.convolutions import convolution_subset >>> u, v, x, y, z = symbols('u v x y z') >>> convolution_subset([u, v], [x, y]) [u*x, u*y + v*x] >>> convolution_subset([u, v, x], [y, z]) [u*y, u*z + v*y, x*y, x*z] >>> convolution_subset([1, S(2)/3], [3, 4]) [3, 6] >>> convolution_subset([1, 3, S(5)/7], [7]) [7, 21, 5, 0] References ========== .. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf """ if not a or not b: return [] if not iterable(a) or not iterable(b): raise TypeError("Expected a sequence of coefficients for convolution") a = [sympify(arg) for arg in a] b = [sympify(arg) for arg in b] n = max(len(a), len(b)) if n&(n - 1): # not a power of 2 n = 2**n.bit_length() # padding with zeros a += [S.Zero]*(n - len(a)) b += [S.Zero]*(n - len(b)) c = [S.Zero]*n for mask in range(n): smask = mask while smask > 0: c[mask] += expand_mul(a[smask] * b[mask^smask]) smask = (smask - 1)&mask c[mask] += expand_mul(a[smask] * b[mask^smask]) return c
#----------------------------------------------------------------------------# # # # Covering Product # # # #----------------------------------------------------------------------------#
[docs]def covering_product(a, b): """ Returns the covering product of given sequences. The indices of each argument, considered as bit strings, correspond to subsets of a finite set. The covering product of given sequences is a sequence which contains the sum of products of the elements of the given sequences grouped by the *bitwise-OR* of the corresponding indices. The sequence is automatically padded to the right with zeros, as the definition of subset based on bitmasks (indices) requires the size of sequence to be a power of 2. Parameters ========== a, b : iterables The sequences for which covering product is to be obtained. Examples ======== >>> from sympy import symbols, S, I, covering_product >>> u, v, x, y, z = symbols('u v x y z') >>> covering_product([u, v], [x, y]) [u*x, u*y + v*x + v*y] >>> covering_product([u, v, x], [y, z]) [u*y, u*z + v*y + v*z, x*y, x*z] >>> covering_product([1, S(2)/3], [3, 4 + 5*I]) [3, 26/3 + 25*I/3] >>> covering_product([1, 3, S(5)/7], [7, 8]) [7, 53, 5, 40/7] References ========== .. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf """ if not a or not b: return [] a, b = a[:], b[:] n = max(len(a), len(b)) if n&(n - 1): # not a power of 2 n = 2**n.bit_length() # padding with zeros a += [S.Zero]*(n - len(a)) b += [S.Zero]*(n - len(b)) a, b = mobius_transform(a), mobius_transform(b) a = [expand_mul(x*y) for x, y in zip(a, b)] a = inverse_mobius_transform(a) return a
#----------------------------------------------------------------------------# # # # Intersecting Product # # # #----------------------------------------------------------------------------#
[docs]def intersecting_product(a, b): """ Returns the intersecting product of given sequences. The indices of each argument, considered as bit strings, correspond to subsets of a finite set. The intersecting product of given sequences is the sequence which contains the sum of products of the elements of the given sequences grouped by the *bitwise-AND* of the corresponding indices. The sequence is automatically padded to the right with zeros, as the definition of subset based on bitmasks (indices) requires the size of sequence to be a power of 2. Parameters ========== a, b : iterables The sequences for which intersecting product is to be obtained. Examples ======== >>> from sympy import symbols, S, I, intersecting_product >>> u, v, x, y, z = symbols('u v x y z') >>> intersecting_product([u, v], [x, y]) [u*x + u*y + v*x, v*y] >>> intersecting_product([u, v, x], [y, z]) [u*y + u*z + v*y + x*y + x*z, v*z, 0, 0] >>> intersecting_product([1, S(2)/3], [3, 4 + 5*I]) [9 + 5*I, 8/3 + 10*I/3] >>> intersecting_product([1, 3, S(5)/7], [7, 8]) [327/7, 24, 0, 0] References ========== .. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf """ if not a or not b: return [] a, b = a[:], b[:] n = max(len(a), len(b)) if n&(n - 1): # not a power of 2 n = 2**n.bit_length() # padding with zeros a += [S.Zero]*(n - len(a)) b += [S.Zero]*(n - len(b)) a, b = mobius_transform(a, subset=False), mobius_transform(b, subset=False) a = [expand_mul(x*y) for x, y in zip(a, b)] a = inverse_mobius_transform(a, subset=False) return a