from __future__ import print_function, division
from sympy.core import S, Add, Mul, sympify, Symbol, Dummy, Basic
from sympy.core.expr import Expr
from sympy.core.exprtools import factor_terms
from sympy.core.function import (Function, Derivative, ArgumentIndexError,
AppliedUndef)
from sympy.core.logic import fuzzy_not, fuzzy_or
from sympy.core.numbers import pi, I, oo
from sympy.core.relational import Eq
from sympy.functions.elementary.exponential import exp, exp_polar, log
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import atan, atan2
###############################################################################
######################### REAL and IMAGINARY PARTS ############################
###############################################################################
[docs]class re(Function):
"""
Returns real part of expression. This function performs only
elementary analysis and so it will fail to decompose properly
more complicated expressions. If completely simplified result
is needed then use Basic.as_real_imag() or perform complex
expansion on instance of this function.
Examples
========
>>> from sympy import re, im, I, E
>>> from sympy.abc import x, y
>>> re(2*E)
2*E
>>> re(2*I + 17)
17
>>> re(2*I)
0
>>> re(im(x) + x*I + 2)
2
See Also
========
im
"""
is_real = True
unbranched = True # implicitly works on the projection to C
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
elif arg.is_real:
return arg
elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_real:
return S.Zero
elif arg.is_Matrix:
return arg.as_real_imag()[0]
elif arg.is_Function and isinstance(arg, conjugate):
return re(arg.args[0])
else:
included, reverted, excluded = [], [], []
args = Add.make_args(arg)
for term in args:
coeff = term.as_coefficient(S.ImaginaryUnit)
if coeff is not None:
if not coeff.is_real:
reverted.append(coeff)
elif not term.has(S.ImaginaryUnit) and term.is_real:
excluded.append(term)
else:
# Try to do some advanced expansion. If
# impossible, don't try to do re(arg) again
# (because this is what we are trying to do now).
real_imag = term.as_real_imag(ignore=arg)
if real_imag:
excluded.append(real_imag[0])
else:
included.append(term)
if len(args) != len(included):
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
return cls(a) - im(b) + c
[docs] def as_real_imag(self, deep=True, **hints):
"""
Returns the real number with a zero imaginary part.
"""
return (self, S.Zero)
def _eval_derivative(self, x):
if x.is_real or self.args[0].is_real:
return re(Derivative(self.args[0], x, evaluate=True))
if x.is_imaginary or self.args[0].is_imaginary:
return -S.ImaginaryUnit \
* im(Derivative(self.args[0], x, evaluate=True))
def _eval_rewrite_as_im(self, arg, **kwargs):
return self.args[0] - S.ImaginaryUnit*im(self.args[0])
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_is_zero(self):
# is_imaginary implies nonzero
return fuzzy_or([self.args[0].is_imaginary, self.args[0].is_zero])
def _sage_(self):
import sage.all as sage
return sage.real_part(self.args[0]._sage_())
[docs]class im(Function):
"""
Returns imaginary part of expression. This function performs only
elementary analysis and so it will fail to decompose properly more
complicated expressions. If completely simplified result is needed then
use Basic.as_real_imag() or perform complex expansion on instance of
this function.
Examples
========
>>> from sympy import re, im, E, I
>>> from sympy.abc import x, y
>>> im(2*E)
0
>>> re(2*I + 17)
17
>>> im(x*I)
re(x)
>>> im(re(x) + y)
im(y)
See Also
========
re
"""
is_real = True
unbranched = True # implicitly works on the projection to C
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
elif arg.is_real:
return S.Zero
elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_real:
return -S.ImaginaryUnit * arg
elif arg.is_Matrix:
return arg.as_real_imag()[1]
elif arg.is_Function and isinstance(arg, conjugate):
return -im(arg.args[0])
else:
included, reverted, excluded = [], [], []
args = Add.make_args(arg)
for term in args:
coeff = term.as_coefficient(S.ImaginaryUnit)
if coeff is not None:
if not coeff.is_real:
reverted.append(coeff)
else:
excluded.append(coeff)
elif term.has(S.ImaginaryUnit) or not term.is_real:
# Try to do some advanced expansion. If
# impossible, don't try to do im(arg) again
# (because this is what we are trying to do now).
real_imag = term.as_real_imag(ignore=arg)
if real_imag:
excluded.append(real_imag[1])
else:
included.append(term)
if len(args) != len(included):
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
return cls(a) + re(b) + c
[docs] def as_real_imag(self, deep=True, **hints):
"""
Return the imaginary part with a zero real part.
Examples
========
>>> from sympy.functions import im
>>> from sympy import I
>>> im(2 + 3*I).as_real_imag()
(3, 0)
"""
return (self, S.Zero)
def _eval_derivative(self, x):
if x.is_real or self.args[0].is_real:
return im(Derivative(self.args[0], x, evaluate=True))
if x.is_imaginary or self.args[0].is_imaginary:
return -S.ImaginaryUnit \
* re(Derivative(self.args[0], x, evaluate=True))
def _sage_(self):
import sage.all as sage
return sage.imag_part(self.args[0]._sage_())
def _eval_rewrite_as_re(self, arg, **kwargs):
return -S.ImaginaryUnit*(self.args[0] - re(self.args[0]))
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_is_zero(self):
return self.args[0].is_real
###############################################################################
############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################
###############################################################################
[docs]class sign(Function):
"""
Returns the complex sign of an expression:
If the expression is real the sign will be:
* 1 if expression is positive
* 0 if expression is equal to zero
* -1 if expression is negative
If the expression is imaginary the sign will be:
* I if im(expression) is positive
* -I if im(expression) is negative
Otherwise an unevaluated expression will be returned. When evaluated, the
result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``.
Examples
========
>>> from sympy.functions import sign
>>> from sympy.core.numbers import I
>>> sign(-1)
-1
>>> sign(0)
0
>>> sign(-3*I)
-I
>>> sign(1 + I)
sign(1 + I)
>>> _.evalf()
0.707106781186548 + 0.707106781186548*I
See Also
========
Abs, conjugate
"""
is_finite = True
is_complex = True
def doit(self, **hints):
if self.args[0].is_zero is False:
return self.args[0] / Abs(self.args[0])
return self
@classmethod
def eval(cls, arg):
# handle what we can
if arg.is_Mul:
c, args = arg.as_coeff_mul()
unk = []
s = sign(c)
for a in args:
if a.is_negative:
s = -s
elif a.is_positive:
pass
else:
ai = im(a)
if a.is_imaginary and ai.is_comparable: # i.e. a = I*real
s *= S.ImaginaryUnit
if ai.is_negative:
# can't use sign(ai) here since ai might not be
# a Number
s = -s
else:
unk.append(a)
if c is S.One and len(unk) == len(args):
return None
return s * cls(arg._new_rawargs(*unk))
if arg is S.NaN:
return S.NaN
if arg.is_zero: # it may be an Expr that is zero
return S.Zero
if arg.is_positive:
return S.One
if arg.is_negative:
return S.NegativeOne
if arg.is_Function:
if isinstance(arg, sign):
return arg
if arg.is_imaginary:
if arg.is_Pow and arg.exp is S.Half:
# we catch this because non-trivial sqrt args are not expanded
# e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1)
return S.ImaginaryUnit
arg2 = -S.ImaginaryUnit * arg
if arg2.is_positive:
return S.ImaginaryUnit
if arg2.is_negative:
return -S.ImaginaryUnit
def _eval_Abs(self):
if fuzzy_not(self.args[0].is_zero):
return S.One
def _eval_conjugate(self):
return sign(conjugate(self.args[0]))
def _eval_derivative(self, x):
if self.args[0].is_real:
from sympy.functions.special.delta_functions import DiracDelta
return 2 * Derivative(self.args[0], x, evaluate=True) \
* DiracDelta(self.args[0])
elif self.args[0].is_imaginary:
from sympy.functions.special.delta_functions import DiracDelta
return 2 * Derivative(self.args[0], x, evaluate=True) \
* DiracDelta(-S.ImaginaryUnit * self.args[0])
def _eval_is_nonnegative(self):
if self.args[0].is_nonnegative:
return True
def _eval_is_nonpositive(self):
if self.args[0].is_nonpositive:
return True
def _eval_is_imaginary(self):
return self.args[0].is_imaginary
def _eval_is_integer(self):
return self.args[0].is_real
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_power(self, other):
if (
fuzzy_not(self.args[0].is_zero) and
other.is_integer and
other.is_even
):
return S.One
def _sage_(self):
import sage.all as sage
return sage.sgn(self.args[0]._sage_())
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
if arg.is_real:
return Piecewise((1, arg > 0), (-1, arg < 0), (0, True))
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
from sympy.functions.special.delta_functions import Heaviside
if arg.is_real:
return Heaviside(arg)*2-1
def _eval_simplify(self, ratio, measure, rational, inverse):
return self.func(self.args[0].factor())
[docs]class Abs(Function):
"""
Return the absolute value of the argument.
This is an extension of the built-in function abs() to accept symbolic
values. If you pass a SymPy expression to the built-in abs(), it will
pass it automatically to Abs().
Examples
========
>>> from sympy import Abs, Symbol, S
>>> Abs(-1)
1
>>> x = Symbol('x', real=True)
>>> Abs(-x)
Abs(x)
>>> Abs(x**2)
x**2
>>> abs(-x) # The Python built-in
Abs(x)
Note that the Python built-in will return either an Expr or int depending on
the argument::
>>> type(abs(-1))
<... 'int'>
>>> type(abs(S.NegativeOne))
<class 'sympy.core.numbers.One'>
Abs will always return a sympy object.
See Also
========
sign, conjugate
"""
is_real = True
is_negative = False
unbranched = True
[docs] def fdiff(self, argindex=1):
"""
Get the first derivative of the argument to Abs().
Examples
========
>>> from sympy.abc import x
>>> from sympy.functions import Abs
>>> Abs(-x).fdiff()
sign(x)
"""
if argindex == 1:
return sign(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.simplify.simplify import signsimp
from sympy.core.function import expand_mul
if hasattr(arg, '_eval_Abs'):
obj = arg._eval_Abs()
if obj is not None:
return obj
if not isinstance(arg, Expr):
raise TypeError("Bad argument type for Abs(): %s" % type(arg))
# handle what we can
arg = signsimp(arg, evaluate=False)
if arg.is_Mul:
known = []
unk = []
for t in arg.args:
tnew = cls(t)
if isinstance(tnew, cls):
unk.append(tnew.args[0])
else:
known.append(tnew)
known = Mul(*known)
unk = cls(Mul(*unk), evaluate=False) if unk else S.One
return known*unk
if arg is S.NaN:
return S.NaN
if arg is S.ComplexInfinity:
return S.Infinity
if arg.is_Pow:
base, exponent = arg.as_base_exp()
if base.is_real:
if exponent.is_integer:
if exponent.is_even:
return arg
if base is S.NegativeOne:
return S.One
if isinstance(base, cls) and exponent is S.NegativeOne:
return arg
return Abs(base)**exponent
if base.is_nonnegative:
return base**re(exponent)
if base.is_negative:
return (-base)**re(exponent)*exp(-S.Pi*im(exponent))
return
elif not base.has(Symbol): # complex base
# express base**exponent as exp(exponent*log(base))
a, b = log(base).as_real_imag()
z = a + I*b
return exp(re(exponent*z))
if isinstance(arg, exp):
return exp(re(arg.args[0]))
if isinstance(arg, AppliedUndef):
return
if arg.is_Add and arg.has(S.Infinity, S.NegativeInfinity):
if any(a.is_infinite for a in arg.as_real_imag()):
return S.Infinity
if arg.is_zero:
return S.Zero
if arg.is_nonnegative:
return arg
if arg.is_nonpositive:
return -arg
if arg.is_imaginary:
arg2 = -S.ImaginaryUnit * arg
if arg2.is_nonnegative:
return arg2
# reject result if all new conjugates are just wrappers around
# an expression that was already in the arg
conj = signsimp(arg.conjugate(), evaluate=False)
new_conj = conj.atoms(conjugate) - arg.atoms(conjugate)
if new_conj and all(arg.has(i.args[0]) for i in new_conj):
return
if arg != conj and arg != -conj:
ignore = arg.atoms(Abs)
abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore})
unk = [a for a in abs_free_arg.free_symbols if a.is_real is None]
if not unk or not all(conj.has(conjugate(u)) for u in unk):
return sqrt(expand_mul(arg*conj))
def _eval_is_integer(self):
if self.args[0].is_real:
return self.args[0].is_integer
def _eval_is_nonzero(self):
return fuzzy_not(self._args[0].is_zero)
def _eval_is_zero(self):
return self._args[0].is_zero
def _eval_is_positive(self):
is_z = self.is_zero
if is_z is not None:
return not is_z
def _eval_is_rational(self):
if self.args[0].is_real:
return self.args[0].is_rational
def _eval_is_even(self):
if self.args[0].is_real:
return self.args[0].is_even
def _eval_is_odd(self):
if self.args[0].is_real:
return self.args[0].is_odd
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_power(self, exponent):
if self.args[0].is_real and exponent.is_integer:
if exponent.is_even:
return self.args[0]**exponent
elif exponent is not S.NegativeOne and exponent.is_Integer:
return self.args[0]**(exponent - 1)*self
return
def _eval_nseries(self, x, n, logx):
direction = self.args[0].leadterm(x)[0]
s = self.args[0]._eval_nseries(x, n=n, logx=logx)
when = Eq(direction, 0)
return Piecewise(
((s.subs(direction, 0)), when),
(sign(direction)*s, True),
)
def _sage_(self):
import sage.all as sage
return sage.abs_symbolic(self.args[0]._sage_())
def _eval_derivative(self, x):
if self.args[0].is_real or self.args[0].is_imaginary:
return Derivative(self.args[0], x, evaluate=True) \
* sign(conjugate(self.args[0]))
rv = (re(self.args[0]) * Derivative(re(self.args[0]), x,
evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]),
x, evaluate=True)) / Abs(self.args[0])
return rv.rewrite(sign)
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
# Note this only holds for real arg (since Heaviside is not defined
# for complex arguments).
from sympy.functions.special.delta_functions import Heaviside
if arg.is_real:
return arg*(Heaviside(arg) - Heaviside(-arg))
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
if arg.is_real:
return Piecewise((arg, arg >= 0), (-arg, True))
def _eval_rewrite_as_sign(self, arg, **kwargs):
return arg/sign(arg)
[docs]class arg(Function):
"""
Returns the argument (in radians) of a complex number. For a positive
number, the argument is always 0.
Examples
========
>>> from sympy.functions import arg
>>> from sympy import I, sqrt
>>> arg(2.0)
0
>>> arg(I)
pi/2
>>> arg(sqrt(2) + I*sqrt(2))
pi/4
"""
is_real = True
is_finite = True
@classmethod
def eval(cls, arg):
if isinstance(arg, exp_polar):
return periodic_argument(arg, oo)
if not arg.is_Atom:
c, arg_ = factor_terms(arg).as_coeff_Mul()
if arg_.is_Mul:
arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else
sign(a) for a in arg_.args])
arg_ = sign(c)*arg_
else:
arg_ = arg
if arg_.atoms(AppliedUndef):
return
x, y = arg_.as_real_imag()
rv = atan2(y, x)
if rv.is_number:
return rv
if arg_ != arg:
return cls(arg_, evaluate=False)
def _eval_derivative(self, t):
x, y = self.args[0].as_real_imag()
return (x * Derivative(y, t, evaluate=True) - y *
Derivative(x, t, evaluate=True)) / (x**2 + y**2)
def _eval_rewrite_as_atan2(self, arg, **kwargs):
x, y = self.args[0].as_real_imag()
return atan2(y, x)
[docs]class conjugate(Function):
"""
Returns the `complex conjugate` Ref[1] of an argument.
In mathematics, the complex conjugate of a complex number
is given by changing the sign of the imaginary part.
Thus, the conjugate of the complex number
:math:`a + ib` (where a and b are real numbers) is :math:`a - ib`
Examples
========
>>> from sympy import conjugate, I
>>> conjugate(2)
2
>>> conjugate(I)
-I
See Also
========
sign, Abs
References
==========
.. [1] https://en.wikipedia.org/wiki/Complex_conjugation
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_conjugate()
if obj is not None:
return obj
def _eval_Abs(self):
return Abs(self.args[0], evaluate=True)
def _eval_adjoint(self):
return transpose(self.args[0])
def _eval_conjugate(self):
return self.args[0]
def _eval_derivative(self, x):
if x.is_real:
return conjugate(Derivative(self.args[0], x, evaluate=True))
elif x.is_imaginary:
return -conjugate(Derivative(self.args[0], x, evaluate=True))
def _eval_transpose(self):
return adjoint(self.args[0])
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
class transpose(Function):
"""
Linear map transposition.
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_transpose()
if obj is not None:
return obj
def _eval_adjoint(self):
return conjugate(self.args[0])
def _eval_conjugate(self):
return adjoint(self.args[0])
def _eval_transpose(self):
return self.args[0]
class adjoint(Function):
"""
Conjugate transpose or Hermite conjugation.
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_adjoint()
if obj is not None:
return obj
obj = arg._eval_transpose()
if obj is not None:
return conjugate(obj)
def _eval_adjoint(self):
return self.args[0]
def _eval_conjugate(self):
return transpose(self.args[0])
def _eval_transpose(self):
return conjugate(self.args[0])
def _latex(self, printer, exp=None, *args):
arg = printer._print(self.args[0])
tex = r'%s^{\dagger}' % arg
if exp:
tex = r'\left(%s\right)^{%s}' % (tex, printer._print(exp))
return tex
def _pretty(self, printer, *args):
from sympy.printing.pretty.stringpict import prettyForm
pform = printer._print(self.args[0], *args)
if printer._use_unicode:
pform = pform**prettyForm(u'\N{DAGGER}')
else:
pform = pform**prettyForm('+')
return pform
###############################################################################
############### HANDLING OF POLAR NUMBERS #####################################
###############################################################################
[docs]class polar_lift(Function):
"""
Lift argument to the Riemann surface of the logarithm, using the
standard branch.
>>> from sympy import Symbol, polar_lift, I
>>> p = Symbol('p', polar=True)
>>> x = Symbol('x')
>>> polar_lift(4)
4*exp_polar(0)
>>> polar_lift(-4)
4*exp_polar(I*pi)
>>> polar_lift(-I)
exp_polar(-I*pi/2)
>>> polar_lift(I + 2)
polar_lift(2 + I)
>>> polar_lift(4*x)
4*polar_lift(x)
>>> polar_lift(4*p)
4*p
See Also
========
sympy.functions.elementary.exponential.exp_polar
periodic_argument
"""
is_polar = True
is_comparable = False # Cannot be evalf'd.
@classmethod
def eval(cls, arg):
from sympy.functions.elementary.complexes import arg as argument
if arg.is_number:
ar = argument(arg)
# In general we want to affirm that something is known,
# e.g. `not ar.has(argument) and not ar.has(atan)`
# but for now we will just be more restrictive and
# see that it has evaluated to one of the known values.
if ar in (0, pi/2, -pi/2, pi):
return exp_polar(I*ar)*abs(arg)
if arg.is_Mul:
args = arg.args
else:
args = [arg]
included = []
excluded = []
positive = []
for arg in args:
if arg.is_polar:
included += [arg]
elif arg.is_positive:
positive += [arg]
else:
excluded += [arg]
if len(excluded) < len(args):
if excluded:
return Mul(*(included + positive))*polar_lift(Mul(*excluded))
elif included:
return Mul(*(included + positive))
else:
return Mul(*positive)*exp_polar(0)
def _eval_evalf(self, prec):
""" Careful! any evalf of polar numbers is flaky """
return self.args[0]._eval_evalf(prec)
def _eval_Abs(self):
return Abs(self.args[0], evaluate=True)
[docs]class periodic_argument(Function):
"""
Represent the argument on a quotient of the Riemann surface of the
logarithm. That is, given a period P, always return a value in
(-P/2, P/2], by using exp(P*I) == 1.
>>> from sympy import exp, exp_polar, periodic_argument, unbranched_argument
>>> from sympy import I, pi
>>> unbranched_argument(exp(5*I*pi))
pi
>>> unbranched_argument(exp_polar(5*I*pi))
5*pi
>>> periodic_argument(exp_polar(5*I*pi), 2*pi)
pi
>>> periodic_argument(exp_polar(5*I*pi), 3*pi)
-pi
>>> periodic_argument(exp_polar(5*I*pi), pi)
0
See Also
========
sympy.functions.elementary.exponential.exp_polar
polar_lift : Lift argument to the Riemann surface of the logarithm
principal_branch
"""
@classmethod
def _getunbranched(cls, ar):
if ar.is_Mul:
args = ar.args
else:
args = [ar]
unbranched = 0
for a in args:
if not a.is_polar:
unbranched += arg(a)
elif isinstance(a, exp_polar):
unbranched += a.exp.as_real_imag()[1]
elif a.is_Pow:
re, im = a.exp.as_real_imag()
unbranched += re*unbranched_argument(
a.base) + im*log(abs(a.base))
elif isinstance(a, polar_lift):
unbranched += arg(a.args[0])
else:
return None
return unbranched
@classmethod
def eval(cls, ar, period):
# Our strategy is to evaluate the argument on the Riemann surface of the
# logarithm, and then reduce.
# NOTE evidently this means it is a rather bad idea to use this with
# period != 2*pi and non-polar numbers.
if not period.is_positive:
return None
if period == oo and isinstance(ar, principal_branch):
return periodic_argument(*ar.args)
if isinstance(ar, polar_lift) and period >= 2*pi:
return periodic_argument(ar.args[0], period)
if ar.is_Mul:
newargs = [x for x in ar.args if not x.is_positive]
if len(newargs) != len(ar.args):
return periodic_argument(Mul(*newargs), period)
unbranched = cls._getunbranched(ar)
if unbranched is None:
return None
if unbranched.has(periodic_argument, atan2, atan):
return None
if period == oo:
return unbranched
if period != oo:
n = ceiling(unbranched/period - S(1)/2)*period
if not n.has(ceiling):
return unbranched - n
def _eval_evalf(self, prec):
z, period = self.args
if period == oo:
unbranched = periodic_argument._getunbranched(z)
if unbranched is None:
return self
return unbranched._eval_evalf(prec)
ub = periodic_argument(z, oo)._eval_evalf(prec)
return (ub - ceiling(ub/period - S(1)/2)*period)._eval_evalf(prec)
def unbranched_argument(arg):
return periodic_argument(arg, oo)
[docs]class principal_branch(Function):
"""
Represent a polar number reduced to its principal branch on a quotient
of the Riemann surface of the logarithm.
This is a function of two arguments. The first argument is a polar
number `z`, and the second one a positive real number of infinity, `p`.
The result is "z mod exp_polar(I*p)".
>>> from sympy import exp_polar, principal_branch, oo, I, pi
>>> from sympy.abc import z
>>> principal_branch(z, oo)
z
>>> principal_branch(exp_polar(2*pi*I)*3, 2*pi)
3*exp_polar(0)
>>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi)
3*principal_branch(z, 2*pi)
See Also
========
sympy.functions.elementary.exponential.exp_polar
polar_lift : Lift argument to the Riemann surface of the logarithm
periodic_argument
"""
is_polar = True
is_comparable = False # cannot always be evalf'd
@classmethod
def eval(self, x, period):
from sympy import oo, exp_polar, I, Mul, polar_lift, Symbol
if isinstance(x, polar_lift):
return principal_branch(x.args[0], period)
if period == oo:
return x
ub = periodic_argument(x, oo)
barg = periodic_argument(x, period)
if ub != barg and not ub.has(periodic_argument) \
and not barg.has(periodic_argument):
pl = polar_lift(x)
def mr(expr):
if not isinstance(expr, Symbol):
return polar_lift(expr)
return expr
pl = pl.replace(polar_lift, mr)
# Recompute unbranched argument
ub = periodic_argument(pl, oo)
if not pl.has(polar_lift):
if ub != barg:
res = exp_polar(I*(barg - ub))*pl
else:
res = pl
if not res.is_polar and not res.has(exp_polar):
res *= exp_polar(0)
return res
if not x.free_symbols:
c, m = x, ()
else:
c, m = x.as_coeff_mul(*x.free_symbols)
others = []
for y in m:
if y.is_positive:
c *= y
else:
others += [y]
m = tuple(others)
arg = periodic_argument(c, period)
if arg.has(periodic_argument):
return None
if arg.is_number and (unbranched_argument(c) != arg or
(arg == 0 and m != () and c != 1)):
if arg == 0:
return abs(c)*principal_branch(Mul(*m), period)
return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c)
if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \
and m == ():
return exp_polar(arg*I)*abs(c)
def _eval_evalf(self, prec):
from sympy import exp, pi, I
z, period = self.args
p = periodic_argument(z, period)._eval_evalf(prec)
if abs(p) > pi or p == -pi:
return self # Cannot evalf for this argument.
return (abs(z)*exp(I*p))._eval_evalf(prec)
def _polarify(eq, lift, pause=False):
from sympy import Integral
if eq.is_polar:
return eq
if eq.is_number and not pause:
return polar_lift(eq)
if isinstance(eq, Symbol) and not pause and lift:
return polar_lift(eq)
elif eq.is_Atom:
return eq
elif eq.is_Add:
r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args])
if lift:
return polar_lift(r)
return r
elif eq.is_Function:
return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args])
elif isinstance(eq, Integral):
# Don't lift the integration variable
func = _polarify(eq.function, lift, pause=pause)
limits = []
for limit in eq.args[1:]:
var = _polarify(limit[0], lift=False, pause=pause)
rest = _polarify(limit[1:], lift=lift, pause=pause)
limits.append((var,) + rest)
return Integral(*((func,) + tuple(limits)))
else:
return eq.func(*[_polarify(arg, lift, pause=pause)
if isinstance(arg, Expr) else arg for arg in eq.args])
def polarify(eq, subs=True, lift=False):
"""
Turn all numbers in eq into their polar equivalents (under the standard
choice of argument).
Note that no attempt is made to guess a formal convention of adding
polar numbers, expressions like 1 + x will generally not be altered.
Note also that this function does not promote exp(x) to exp_polar(x).
If ``subs`` is True, all symbols which are not already polar will be
substituted for polar dummies; in this case the function behaves much
like posify.
If ``lift`` is True, both addition statements and non-polar symbols are
changed to their polar_lift()ed versions.
Note that lift=True implies subs=False.
>>> from sympy import polarify, sin, I
>>> from sympy.abc import x, y
>>> expr = (-x)**y
>>> expr.expand()
(-x)**y
>>> polarify(expr)
((_x*exp_polar(I*pi))**_y, {_x: x, _y: y})
>>> polarify(expr)[0].expand()
_x**_y*exp_polar(_y*I*pi)
>>> polarify(x, lift=True)
polar_lift(x)
>>> polarify(x*(1+y), lift=True)
polar_lift(x)*polar_lift(y + 1)
Adds are treated carefully:
>>> polarify(1 + sin((1 + I)*x))
(sin(_x*polar_lift(1 + I)) + 1, {_x: x})
"""
if lift:
subs = False
eq = _polarify(sympify(eq), lift)
if not subs:
return eq
reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols}
eq = eq.subs(reps)
return eq, {r: s for s, r in reps.items()}
def _unpolarify(eq, exponents_only, pause=False):
if not isinstance(eq, Basic) or eq.is_Atom:
return eq
if not pause:
if isinstance(eq, exp_polar):
return exp(_unpolarify(eq.exp, exponents_only))
if isinstance(eq, principal_branch) and eq.args[1] == 2*pi:
return _unpolarify(eq.args[0], exponents_only)
if (
eq.is_Add or eq.is_Mul or eq.is_Boolean or
eq.is_Relational and (
eq.rel_op in ('==', '!=') and 0 in eq.args or
eq.rel_op not in ('==', '!='))
):
return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args])
if isinstance(eq, polar_lift):
return _unpolarify(eq.args[0], exponents_only)
if eq.is_Pow:
expo = _unpolarify(eq.exp, exponents_only)
base = _unpolarify(eq.base, exponents_only,
not (expo.is_integer and not pause))
return base**expo
if eq.is_Function and getattr(eq.func, 'unbranched', False):
return eq.func(*[_unpolarify(x, exponents_only, exponents_only)
for x in eq.args])
return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args])
def unpolarify(eq, subs={}, exponents_only=False):
"""
If p denotes the projection from the Riemann surface of the logarithm to
the complex line, return a simplified version eq' of `eq` such that
p(eq') == p(eq).
Also apply the substitution subs in the end. (This is a convenience, since
``unpolarify``, in a certain sense, undoes polarify.)
>>> from sympy import unpolarify, polar_lift, sin, I
>>> unpolarify(polar_lift(I + 2))
2 + I
>>> unpolarify(sin(polar_lift(I + 7)))
sin(7 + I)
"""
if isinstance(eq, bool):
return eq
eq = sympify(eq)
if subs != {}:
return unpolarify(eq.subs(subs))
changed = True
pause = False
if exponents_only:
pause = True
while changed:
changed = False
res = _unpolarify(eq, exponents_only, pause)
if res != eq:
changed = True
eq = res
if isinstance(res, bool):
return res
# Finally, replacing Exp(0) by 1 is always correct.
# So is polar_lift(0) -> 0.
return res.subs({exp_polar(0): 1, polar_lift(0): 0})
# /cyclic/
from sympy.core import basic as _
_.abs_ = Abs
del _