Source code for sympy.parsing.maxima
from __future__ import print_function, division
import re
from sympy import sympify, Sum, product, sin, cos
class MaximaHelpers:
def maxima_expand(expr):
return expr.expand()
def maxima_float(expr):
return expr.evalf()
def maxima_trigexpand(expr):
return expr.expand(trig=True)
def maxima_sum(a1, a2, a3, a4):
return Sum(a1, (a2, a3, a4)).doit()
def maxima_product(a1, a2, a3, a4):
return product(a1, (a2, a3, a4))
def maxima_csc(expr):
return 1/sin(expr)
def maxima_sec(expr):
return 1/cos(expr)
sub_dict = {
'pi': re.compile(r'%pi'),
'E': re.compile(r'%e'),
'I': re.compile(r'%i'),
'**': re.compile(r'\^'),
'oo': re.compile(r'\binf\b'),
'-oo': re.compile(r'\bminf\b'),
"'-'": re.compile(r'\bminus\b'),
'maxima_expand': re.compile(r'\bexpand\b'),
'maxima_float': re.compile(r'\bfloat\b'),
'maxima_trigexpand': re.compile(r'\btrigexpand'),
'maxima_sum': re.compile(r'\bsum\b'),
'maxima_product': re.compile(r'\bproduct\b'),
'cancel': re.compile(r'\bratsimp\b'),
'maxima_csc': re.compile(r'\bcsc\b'),
'maxima_sec': re.compile(r'\bsec\b')
}
var_name = re.compile(r'^\s*(\w+)\s*:')
[docs]def parse_maxima(str, globals=None, name_dict={}):
str = str.strip()
str = str.rstrip('; ')
for k, v in sub_dict.items():
str = v.sub(k, str)
assign_var = None
var_match = var_name.search(str)
if var_match:
assign_var = var_match.group(1)
str = str[var_match.end():].strip()
dct = MaximaHelpers.__dict__.copy()
dct.update(name_dict)
obj = sympify(str, locals=dct)
if assign_var and globals:
globals[assign_var] = obj
return obj