"""Implementation of :class:`AlgebraicField` class. """
from __future__ import print_function, division
from sympy.polys.domains.characteristiczero import CharacteristicZero
from sympy.polys.domains.field import Field
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.polys.polyclasses import ANP
from sympy.polys.polyerrors import CoercionFailed, DomainError, NotAlgebraic, IsomorphismFailed
from sympy.utilities import public
[docs]@public
class AlgebraicField(Field, CharacteristicZero, SimpleDomain):
"""A class for representing algebraic number fields. """
dtype = ANP
is_AlgebraicField = is_Algebraic = True
is_Numerical = True
has_assoc_Ring = False
has_assoc_Field = True
def __init__(self, dom, *ext):
if not dom.is_QQ:
raise DomainError("ground domain must be a rational field")
from sympy.polys.numberfields import to_number_field
self.orig_ext = ext
self.ext = to_number_field(ext)
self.mod = self.ext.minpoly.rep
self.domain = self.dom = dom
self.ngens = 1
self.symbols = self.gens = (self.ext,)
self.unit = self([dom(1), dom(0)])
self.zero = self.dtype.zero(self.mod.rep, dom)
self.one = self.dtype.one(self.mod.rep, dom)
def new(self, element):
return self.dtype(element, self.mod.rep, self.dom)
def __str__(self):
return str(self.dom) + '<' + str(self.ext) + '>'
def __hash__(self):
return hash((self.__class__.__name__, self.dtype, self.dom, self.ext))
def __eq__(self, other):
"""Returns ``True`` if two domains are equivalent. """
return isinstance(other, AlgebraicField) and \
self.dtype == other.dtype and self.ext == other.ext
[docs] def algebraic_field(self, *extension):
r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. """
return AlgebraicField(self.dom, *((self.ext,) + extension))
[docs] def to_sympy(self, a):
"""Convert ``a`` to a SymPy object. """
from sympy.polys.numberfields import AlgebraicNumber
return AlgebraicNumber(self.ext, a).as_expr()
[docs] def from_sympy(self, a):
"""Convert SymPy's expression to ``dtype``. """
try:
return self([self.dom.from_sympy(a)])
except CoercionFailed:
pass
from sympy.polys.numberfields import to_number_field
try:
return self(to_number_field(a, self.ext).native_coeffs())
except (NotAlgebraic, IsomorphismFailed):
raise CoercionFailed(
"%s is not a valid algebraic number in %s" % (a, self))
[docs] def from_ZZ_python(K1, a, K0):
"""Convert a Python ``int`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
[docs] def from_QQ_python(K1, a, K0):
"""Convert a Python ``Fraction`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
[docs] def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpz`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
[docs] def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpq`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
[docs] def from_RealField(K1, a, K0):
"""Convert a mpmath ``mpf`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
[docs] def get_ring(self):
"""Returns a ring associated with ``self``. """
raise DomainError('there is no ring associated with %s' % self)
[docs] def is_positive(self, a):
"""Returns True if ``a`` is positive. """
return self.dom.is_positive(a.LC())
[docs] def is_negative(self, a):
"""Returns True if ``a`` is negative. """
return self.dom.is_negative(a.LC())
[docs] def is_nonpositive(self, a):
"""Returns True if ``a`` is non-positive. """
return self.dom.is_nonpositive(a.LC())
[docs] def is_nonnegative(self, a):
"""Returns True if ``a`` is non-negative. """
return self.dom.is_nonnegative(a.LC())
[docs] def numer(self, a):
"""Returns numerator of ``a``. """
return a
[docs] def denom(self, a):
"""Returns denominator of ``a``. """
return self.one