"""Implementation of :class:`QuotientRing` class."""
from __future__ import print_function, division
from sympy.polys.agca.modules import FreeModuleQuotientRing
from sympy.polys.domains.ring import Ring
from sympy.polys.polyerrors import NotReversible, CoercionFailed
from sympy.utilities import public
# TODO
# - successive quotients (when quotient ideals are implemented)
# - poly rings over quotients?
# - division by non-units in integral domains?
@public
class QuotientRingElement(object):
"""
Class representing elements of (commutative) quotient rings.
Attributes:
- ring - containing ring
- data - element of ring.ring (i.e. base ring) representing self
"""
def __init__(self, ring, data):
self.ring = ring
self.data = data
def __str__(self):
from sympy import sstr
return sstr(self.data) + " + " + str(self.ring.base_ideal)
def __add__(self, om):
if not isinstance(om, self.__class__) or om.ring != self.ring:
try:
om = self.ring.convert(om)
except (NotImplementedError, CoercionFailed):
return NotImplemented
return self.ring(self.data + om.data)
__radd__ = __add__
def __neg__(self):
return self.ring(self.data*self.ring.ring.convert(-1))
def __sub__(self, om):
return self.__add__(-om)
def __rsub__(self, om):
return (-self).__add__(om)
def __mul__(self, o):
if not isinstance(o, self.__class__):
try:
o = self.ring.convert(o)
except (NotImplementedError, CoercionFailed):
return NotImplemented
return self.ring(self.data*o.data)
__rmul__ = __mul__
def __rdiv__(self, o):
return self.ring.revert(self)*o
__rtruediv__ = __rdiv__
def __div__(self, o):
if not isinstance(o, self.__class__):
try:
o = self.ring.convert(o)
except (NotImplementedError, CoercionFailed):
return NotImplemented
return self.ring.revert(o)*self
__truediv__ = __div__
def __pow__(self, oth):
return self.ring(self.data**oth)
def __eq__(self, om):
if not isinstance(om, self.__class__) or om.ring != self.ring:
return False
return self.ring.is_zero(self - om)
def __ne__(self, om):
return not self == om
[docs]class QuotientRing(Ring):
"""
Class representing (commutative) quotient rings.
You should not usually instantiate this by hand, instead use the constructor
from the base ring in the construction.
>>> from sympy.abc import x
>>> from sympy import QQ
>>> I = QQ.old_poly_ring(x).ideal(x**3 + 1)
>>> QQ.old_poly_ring(x).quotient_ring(I)
QQ[x]/<x**3 + 1>
Shorter versions are possible:
>>> QQ.old_poly_ring(x)/I
QQ[x]/<x**3 + 1>
>>> QQ.old_poly_ring(x)/[x**3 + 1]
QQ[x]/<x**3 + 1>
Attributes:
- ring - the base ring
- base_ideal - the ideal used to form the quotient
"""
has_assoc_Ring = True
has_assoc_Field = False
dtype = QuotientRingElement
def __init__(self, ring, ideal):
if not ideal.ring == ring:
raise ValueError('Ideal must belong to %s, got %s' % (ring, ideal))
self.ring = ring
self.base_ideal = ideal
self.zero = self(self.ring.zero)
self.one = self(self.ring.one)
def __str__(self):
return str(self.ring) + "/" + str(self.base_ideal)
def __hash__(self):
return hash((self.__class__.__name__, self.dtype, self.ring, self.base_ideal))
def new(self, a):
"""Construct an element of `self` domain from `a`. """
if not isinstance(a, self.ring.dtype):
a = self.ring(a)
# TODO optionally disable reduction?
return self.dtype(self, self.base_ideal.reduce_element(a))
def __eq__(self, other):
"""Returns `True` if two domains are equivalent. """
return isinstance(other, QuotientRing) and \
self.ring == other.ring and self.base_ideal == other.base_ideal
def from_ZZ_python(K1, a, K0):
"""Convert a Python `int` object to `dtype`. """
return K1(K1.ring.convert(a, K0))
from_QQ_python = from_ZZ_python
from_ZZ_gmpy = from_ZZ_python
from_QQ_gmpy = from_ZZ_python
from_RealField = from_ZZ_python
from_GlobalPolynomialRing = from_ZZ_python
from_FractionField = from_ZZ_python
def from_sympy(self, a):
return self(self.ring.from_sympy(a))
def to_sympy(self, a):
return self.ring.to_sympy(a.data)
def from_QuotientRing(self, a, K0):
if K0 == self:
return a
def poly_ring(self, *gens):
"""Returns a polynomial ring, i.e. `K[X]`. """
raise NotImplementedError('nested domains not allowed')
def frac_field(self, *gens):
"""Returns a fraction field, i.e. `K(X)`. """
raise NotImplementedError('nested domains not allowed')
def revert(self, a):
"""
Compute a**(-1), if possible.
"""
I = self.ring.ideal(a.data) + self.base_ideal
try:
return self(I.in_terms_of_generators(1)[0])
except ValueError: # 1 not in I
raise NotReversible('%s not a unit in %r' % (a, self))
def is_zero(self, a):
return self.base_ideal.contains(a.data)
def free_module(self, rank):
"""
Generate a free module of rank ``rank`` over ``self``.
>>> from sympy.abc import x
>>> from sympy import QQ
>>> (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(2)
(QQ[x]/<x**2 + 1>)**2
"""
return FreeModuleQuotientRing(self, rank)