Source code for sympy.polys.domains.realfield
"""Implementation of :class:`RealField` class. """
from __future__ import print_function, division
from sympy.core.numbers import Float
from sympy.polys.domains.field import Field
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.polys.domains.characteristiczero import CharacteristicZero
from sympy.polys.domains.mpelements import MPContext
from sympy.polys.polyerrors import CoercionFailed
from sympy.utilities import public
[docs]@public
class RealField(Field, CharacteristicZero, SimpleDomain):
"""Real numbers up to the given precision. """
rep = 'RR'
is_RealField = is_RR = True
is_Exact = False
is_Numerical = True
is_PID = False
has_assoc_Ring = False
has_assoc_Field = True
_default_precision = 53
@property
def has_default_precision(self):
return self.precision == self._default_precision
@property
def precision(self):
return self._context.prec
@property
def dps(self):
return self._context.dps
@property
def tolerance(self):
return self._context.tolerance
def __init__(self, prec=_default_precision, dps=None, tol=None):
context = MPContext(prec, dps, tol)
context._parent = self
self._context = context
self.dtype = context.mpf
self.zero = self.dtype(0)
self.one = self.dtype(1)
def __eq__(self, other):
return (isinstance(other, RealField)
and self.precision == other.precision
and self.tolerance == other.tolerance)
def __hash__(self):
return hash((self.__class__.__name__, self.dtype, self.precision, self.tolerance))
[docs] def to_sympy(self, element):
"""Convert ``element`` to SymPy number. """
return Float(element, self.dps)
[docs] def from_sympy(self, expr):
"""Convert SymPy's number to ``dtype``. """
number = expr.evalf(n=self.dps)
if number.is_Number:
return self.dtype(number)
else:
raise CoercionFailed("expected real number, got %s" % expr)
def from_ZZ_python(self, element, base):
return self.dtype(element)
def from_QQ_python(self, element, base):
return self.dtype(element.numerator) / element.denominator
def from_ZZ_gmpy(self, element, base):
return self.dtype(int(element))
def from_QQ_gmpy(self, element, base):
return self.dtype(int(element.numerator)) / int(element.denominator)
def from_RealField(self, element, base):
if self == base:
return element
else:
return self.dtype(element)
def from_ComplexField(self, element, base):
if not element.imag:
return self.dtype(element.real)
[docs] def to_rational(self, element, limit=True):
"""Convert a real number to rational number. """
return self._context.to_rational(element, limit)
[docs] def get_ring(self):
"""Returns a ring associated with ``self``. """
return self
[docs] def get_exact(self):
"""Returns an exact domain associated with ``self``. """
from sympy.polys.domains import QQ
return QQ
[docs] def gcd(self, a, b):
"""Returns GCD of ``a`` and ``b``. """
return self.one
[docs] def lcm(self, a, b):
"""Returns LCM of ``a`` and ``b``. """
return a*b
[docs] def almosteq(self, a, b, tolerance=None):
"""Check if ``a`` and ``b`` are almost equal. """
return self._context.almosteq(a, b, tolerance)