from sympy import Dummy
from sympy.core.compatibility import range
from sympy.ntheory import nextprime
from sympy.ntheory.modular import crt
from sympy.polys.domains import PolynomialRing
from sympy.polys.galoistools import (
gf_gcd, gf_from_dict, gf_gcdex, gf_div, gf_lcm)
from sympy.polys.polyerrors import ModularGCDFailed
from mpmath import sqrt
import random
def _trivial_gcd(f, g):
"""
Compute the GCD of two polynomials in trivial cases, i.e. when one
or both polynomials are zero.
"""
ring = f.ring
if not (f or g):
return ring.zero, ring.zero, ring.zero
elif not f:
if g.LC < ring.domain.zero:
return -g, ring.zero, -ring.one
else:
return g, ring.zero, ring.one
elif not g:
if f.LC < ring.domain.zero:
return -f, -ring.one, ring.zero
else:
return f, ring.one, ring.zero
return None
def _gf_gcd(fp, gp, p):
r"""
Compute the GCD of two univariate polynomials in `\mathbb{Z}_p[x]`.
"""
dom = fp.ring.domain
while gp:
rem = fp
deg = gp.degree()
lcinv = dom.invert(gp.LC, p)
while True:
degrem = rem.degree()
if degrem < deg:
break
rem = (rem - gp.mul_monom((degrem - deg,)).mul_ground(lcinv * rem.LC)).trunc_ground(p)
fp = gp
gp = rem
return fp.mul_ground(dom.invert(fp.LC, p)).trunc_ground(p)
def _degree_bound_univariate(f, g):
r"""
Compute an upper bound for the degree of the GCD of two univariate
integer polynomials `f` and `g`.
The function chooses a suitable prime `p` and computes the GCD of
`f` and `g` in `\mathbb{Z}_p[x]`. The choice of `p` guarantees that
the degree in `\mathbb{Z}_p[x]` is greater than or equal to the degree
in `\mathbb{Z}[x]`.
Parameters
==========
f : PolyElement
univariate integer polynomial
g : PolyElement
univariate integer polynomial
"""
gamma = f.ring.domain.gcd(f.LC, g.LC)
p = 1
p = nextprime(p)
while gamma % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
hp = _gf_gcd(fp, gp, p)
deghp = hp.degree()
return deghp
def _chinese_remainder_reconstruction_univariate(hp, hq, p, q):
r"""
Construct a polynomial `h_{pq}` in `\mathbb{Z}_{p q}[x]` such that
.. math ::
h_{pq} = h_p \; \mathrm{mod} \, p
h_{pq} = h_q \; \mathrm{mod} \, q
for relatively prime integers `p` and `q` and polynomials
`h_p` and `h_q` in `\mathbb{Z}_p[x]` and `\mathbb{Z}_q[x]`
respectively.
The coefficients of the polynomial `h_{pq}` are computed with the
Chinese Remainder Theorem. The symmetric representation in
`\mathbb{Z}_p[x]`, `\mathbb{Z}_q[x]` and `\mathbb{Z}_{p q}[x]` is used.
It is assumed that `h_p` and `h_q` have the same degree.
Parameters
==========
hp : PolyElement
univariate integer polynomial with coefficients in `\mathbb{Z}_p`
hq : PolyElement
univariate integer polynomial with coefficients in `\mathbb{Z}_q`
p : Integer
modulus of `h_p`, relatively prime to `q`
q : Integer
modulus of `h_q`, relatively prime to `p`
Examples
========
>>> from sympy.polys.modulargcd import _chinese_remainder_reconstruction_univariate
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> p = 3
>>> q = 5
>>> hp = -x**3 - 1
>>> hq = 2*x**3 - 2*x**2 + x
>>> hpq = _chinese_remainder_reconstruction_univariate(hp, hq, p, q)
>>> hpq
2*x**3 + 3*x**2 + 6*x + 5
>>> hpq.trunc_ground(p) == hp
True
>>> hpq.trunc_ground(q) == hq
True
"""
n = hp.degree()
x = hp.ring.gens[0]
hpq = hp.ring.zero
for i in range(n+1):
hpq[(i,)] = crt([p, q], [hp.coeff(x**i), hq.coeff(x**i)], symmetric=True)[0]
hpq.strip_zero()
return hpq
[docs]def modgcd_univariate(f, g):
r"""
Computes the GCD of two polynomials in `\mathbb{Z}[x]` using a modular
algorithm.
The algorithm computes the GCD of two univariate integer polynomials
`f` and `g` by computing the GCD in `\mathbb{Z}_p[x]` for suitable
primes `p` and then reconstructing the coefficients with the Chinese
Remainder Theorem. Trial division is only made for candidates which
are very likely the desired GCD.
Parameters
==========
f : PolyElement
univariate integer polynomial
g : PolyElement
univariate integer polynomial
Returns
=======
h : PolyElement
GCD of the polynomials `f` and `g`
cff : PolyElement
cofactor of `f`, i.e. `\frac{f}{h}`
cfg : PolyElement
cofactor of `g`, i.e. `\frac{g}{h}`
Examples
========
>>> from sympy.polys.modulargcd import modgcd_univariate
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> f = x**5 - 1
>>> g = x - 1
>>> h, cff, cfg = modgcd_univariate(f, g)
>>> h, cff, cfg
(x - 1, x**4 + x**3 + x**2 + x + 1, 1)
>>> cff * h == f
True
>>> cfg * h == g
True
>>> f = 6*x**2 - 6
>>> g = 2*x**2 + 4*x + 2
>>> h, cff, cfg = modgcd_univariate(f, g)
>>> h, cff, cfg
(2*x + 2, 3*x - 3, x + 1)
>>> cff * h == f
True
>>> cfg * h == g
True
References
==========
1. [Monagan00]_
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
result = _trivial_gcd(f, g)
if result is not None:
return result
ring = f.ring
cf, f = f.primitive()
cg, g = g.primitive()
ch = ring.domain.gcd(cf, cg)
bound = _degree_bound_univariate(f, g)
if bound == 0:
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch)
gamma = ring.domain.gcd(f.LC, g.LC)
m = 1
p = 1
while True:
p = nextprime(p)
while gamma % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
hp = _gf_gcd(fp, gp, p)
deghp = hp.degree()
if deghp > bound:
continue
elif deghp < bound:
m = 1
bound = deghp
continue
hp = hp.mul_ground(gamma).trunc_ground(p)
if m == 1:
m = p
hlastm = hp
continue
hm = _chinese_remainder_reconstruction_univariate(hp, hlastm, p, m)
m *= p
if not hm == hlastm:
hlastm = hm
continue
h = hm.quo_ground(hm.content())
fquo, frem = f.div(h)
gquo, grem = g.div(h)
if not frem and not grem:
if h.LC < 0:
ch = -ch
h = h.mul_ground(ch)
cff = fquo.mul_ground(cf // ch)
cfg = gquo.mul_ground(cg // ch)
return h, cff, cfg
def _primitive(f, p):
r"""
Compute the content and the primitive part of a polynomial in
`\mathbb{Z}_p[x_0, \ldots, x_{k-2}, y] \cong \mathbb{Z}_p[y][x_0, \ldots, x_{k-2}]`.
Parameters
==========
f : PolyElement
integer polynomial in `\mathbb{Z}_p[x0, \ldots, x{k-2}, y]`
p : Integer
modulus of `f`
Returns
=======
contf : PolyElement
integer polynomial in `\mathbb{Z}_p[y]`, content of `f`
ppf : PolyElement
primitive part of `f`, i.e. `\frac{f}{contf}`
Examples
========
>>> from sympy.polys.modulargcd import _primitive
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> p = 3
>>> f = x**2*y**2 + x**2*y - y**2 - y
>>> _primitive(f, p)
(y**2 + y, x**2 - 1)
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x*y*z - y**2*z**2
>>> _primitive(f, p)
(z, x*y - y**2*z)
"""
ring = f.ring
dom = ring.domain
k = ring.ngens
coeffs = {}
for monom, coeff in f.iterterms():
if monom[:-1] not in coeffs:
coeffs[monom[:-1]] = {}
coeffs[monom[:-1]][monom[-1]] = coeff
cont = []
for coeff in iter(coeffs.values()):
cont = gf_gcd(cont, gf_from_dict(coeff, p, dom), p, dom)
yring = ring.clone(symbols=ring.symbols[k-1])
contf = yring.from_dense(cont).trunc_ground(p)
return contf, f.quo(contf.set_ring(ring))
def _deg(f):
r"""
Compute the degree of a multivariate polynomial
`f \in K[x_0, \ldots, x_{k-2}, y] \cong K[y][x_0, \ldots, x_{k-2}]`.
Parameters
==========
f : PolyElement
polynomial in `K[x_0, \ldots, x_{k-2}, y]`
Returns
=======
degf : Integer tuple
degree of `f` in `x_0, \ldots, x_{k-2}`
Examples
========
>>> from sympy.polys.modulargcd import _deg
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2*y**2 + x**2*y - 1
>>> _deg(f)
(2,)
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x**2*y**2 + x**2*y - 1
>>> _deg(f)
(2, 2)
>>> f = x*y*z - y**2*z**2
>>> _deg(f)
(1, 1)
"""
k = f.ring.ngens
degf = (0,) * (k-1)
for monom in f.itermonoms():
if monom[:-1] > degf:
degf = monom[:-1]
return degf
def _LC(f):
r"""
Compute the leading coefficient of a multivariate polynomial
`f \in K[x_0, \ldots, x_{k-2}, y] \cong K[y][x_0, \ldots, x_{k-2}]`.
Parameters
==========
f : PolyElement
polynomial in `K[x_0, \ldots, x_{k-2}, y]`
Returns
=======
lcf : PolyElement
polynomial in `K[y]`, leading coefficient of `f`
Examples
========
>>> from sympy.polys.modulargcd import _LC
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2*y**2 + x**2*y - 1
>>> _LC(f)
y**2 + y
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x**2*y**2 + x**2*y - 1
>>> _LC(f)
1
>>> f = x*y*z - y**2*z**2
>>> _LC(f)
z
"""
ring = f.ring
k = ring.ngens
yring = ring.clone(symbols=ring.symbols[k-1])
y = yring.gens[0]
degf = _deg(f)
lcf = yring.zero
for monom, coeff in f.iterterms():
if monom[:-1] == degf:
lcf += coeff*y**monom[-1]
return lcf
def _swap(f, i):
"""
Make the variable `x_i` the leading one in a multivariate polynomial `f`.
"""
ring = f.ring
fswap = ring.zero
for monom, coeff in f.iterterms():
monomswap = (monom[i],) + monom[:i] + monom[i+1:]
fswap[monomswap] = coeff
return fswap
def _degree_bound_bivariate(f, g):
r"""
Compute upper degree bounds for the GCD of two bivariate
integer polynomials `f` and `g`.
The GCD is viewed as a polynomial in `\mathbb{Z}[y][x]` and the
function returns an upper bound for its degree and one for the degree
of its content. This is done by choosing a suitable prime `p` and
computing the GCD of the contents of `f \; \mathrm{mod} \, p` and
`g \; \mathrm{mod} \, p`. The choice of `p` guarantees that the degree
of the content in `\mathbb{Z}_p[y]` is greater than or equal to the
degree in `\mathbb{Z}[y]`. To obtain the degree bound in the variable
`x`, the polynomials are evaluated at `y = a` for a suitable
`a \in \mathbb{Z}_p` and then their GCD in `\mathbb{Z}_p[x]` is
computed. If no such `a` exists, i.e. the degree in `\mathbb{Z}_p[x]`
is always smaller than the one in `\mathbb{Z}[y][x]`, then the bound is
set to the minimum of the degrees of `f` and `g` in `x`.
Parameters
==========
f : PolyElement
bivariate integer polynomial
g : PolyElement
bivariate integer polynomial
Returns
=======
xbound : Integer
upper bound for the degree of the GCD of the polynomials `f` and
`g` in the variable `x`
ycontbound : Integer
upper bound for the degree of the content of the GCD of the
polynomials `f` and `g` in the variable `y`
References
==========
1. [Monagan00]_
"""
ring = f.ring
gamma1 = ring.domain.gcd(f.LC, g.LC)
gamma2 = ring.domain.gcd(_swap(f, 1).LC, _swap(g, 1).LC)
badprimes = gamma1 * gamma2
p = 1
p = nextprime(p)
while badprimes % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
contfp, fp = _primitive(fp, p)
contgp, gp = _primitive(gp, p)
conthp = _gf_gcd(contfp, contgp, p) # polynomial in Z_p[y]
ycontbound = conthp.degree()
# polynomial in Z_p[y]
delta = _gf_gcd(_LC(fp), _LC(gp), p)
for a in range(p):
if not delta.evaluate(0, a) % p:
continue
fpa = fp.evaluate(1, a).trunc_ground(p)
gpa = gp.evaluate(1, a).trunc_ground(p)
hpa = _gf_gcd(fpa, gpa, p)
xbound = hpa.degree()
return xbound, ycontbound
return min(fp.degree(), gp.degree()), ycontbound
def _chinese_remainder_reconstruction_multivariate(hp, hq, p, q):
r"""
Construct a polynomial `h_{pq}` in
`\mathbb{Z}_{p q}[x_0, \ldots, x_{k-1}]` such that
.. math ::
h_{pq} = h_p \; \mathrm{mod} \, p
h_{pq} = h_q \; \mathrm{mod} \, q
for relatively prime integers `p` and `q` and polynomials
`h_p` and `h_q` in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` and
`\mathbb{Z}_q[x_0, \ldots, x_{k-1}]` respectively.
The coefficients of the polynomial `h_{pq}` are computed with the
Chinese Remainder Theorem. The symmetric representation in
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`,
`\mathbb{Z}_q[x_0, \ldots, x_{k-1}]` and
`\mathbb{Z}_{p q}[x_0, \ldots, x_{k-1}]` is used.
Parameters
==========
hp : PolyElement
multivariate integer polynomial with coefficients in `\mathbb{Z}_p`
hq : PolyElement
multivariate integer polynomial with coefficients in `\mathbb{Z}_q`
p : Integer
modulus of `h_p`, relatively prime to `q`
q : Integer
modulus of `h_q`, relatively prime to `p`
Examples
========
>>> from sympy.polys.modulargcd import _chinese_remainder_reconstruction_multivariate
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> p = 3
>>> q = 5
>>> hp = x**3*y - x**2 - 1
>>> hq = -x**3*y - 2*x*y**2 + 2
>>> hpq = _chinese_remainder_reconstruction_multivariate(hp, hq, p, q)
>>> hpq
4*x**3*y + 5*x**2 + 3*x*y**2 + 2
>>> hpq.trunc_ground(p) == hp
True
>>> hpq.trunc_ground(q) == hq
True
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> p = 6
>>> q = 5
>>> hp = 3*x**4 - y**3*z + z
>>> hq = -2*x**4 + z
>>> hpq = _chinese_remainder_reconstruction_multivariate(hp, hq, p, q)
>>> hpq
3*x**4 + 5*y**3*z + z
>>> hpq.trunc_ground(p) == hp
True
>>> hpq.trunc_ground(q) == hq
True
"""
hpmonoms = set(hp.monoms())
hqmonoms = set(hq.monoms())
monoms = hpmonoms.intersection(hqmonoms)
hpmonoms.difference_update(monoms)
hqmonoms.difference_update(monoms)
zero = hp.ring.domain.zero
hpq = hp.ring.zero
if isinstance(hp.ring.domain, PolynomialRing):
crt_ = _chinese_remainder_reconstruction_multivariate
else:
def crt_(cp, cq, p, q):
return crt([p, q], [cp, cq], symmetric=True)[0]
for monom in monoms:
hpq[monom] = crt_(hp[monom], hq[monom], p, q)
for monom in hpmonoms:
hpq[monom] = crt_(hp[monom], zero, p, q)
for monom in hqmonoms:
hpq[monom] = crt_(zero, hq[monom], p, q)
return hpq
def _interpolate_multivariate(evalpoints, hpeval, ring, i, p, ground=False):
r"""
Reconstruct a polynomial `h_p` in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`
from a list of evaluation points in `\mathbb{Z}_p` and a list of
polynomials in
`\mathbb{Z}_p[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}]`, which
are the images of `h_p` evaluated in the variable `x_i`.
It is also possible to reconstruct a parameter of the ground domain,
i.e. if `h_p` is a polynomial over `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`.
In this case, one has to set ``ground=True``.
Parameters
==========
evalpoints : list of Integer objects
list of evaluation points in `\mathbb{Z}_p`
hpeval : list of PolyElement objects
list of polynomials in (resp. over)
`\mathbb{Z}_p[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}]`,
images of `h_p` evaluated in the variable `x_i`
ring : PolyRing
`h_p` will be an element of this ring
i : Integer
index of the variable which has to be reconstructed
p : Integer
prime number, modulus of `h_p`
ground : Boolean
indicates whether `x_i` is in the ground domain, default is
``False``
Returns
=======
hp : PolyElement
interpolated polynomial in (resp. over)
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`
"""
hp = ring.zero
if ground:
domain = ring.domain.domain
y = ring.domain.gens[i]
else:
domain = ring.domain
y = ring.gens[i]
for a, hpa in zip(evalpoints, hpeval):
numer = ring.one
denom = domain.one
for b in evalpoints:
if b == a:
continue
numer *= y - b
denom *= a - b
denom = domain.invert(denom, p)
coeff = numer.mul_ground(denom)
hp += hpa.set_ring(ring) * coeff
return hp.trunc_ground(p)
[docs]def modgcd_bivariate(f, g):
r"""
Computes the GCD of two polynomials in `\mathbb{Z}[x, y]` using a
modular algorithm.
The algorithm computes the GCD of two bivariate integer polynomials
`f` and `g` by calculating the GCD in `\mathbb{Z}_p[x, y]` for
suitable primes `p` and then reconstructing the coefficients with the
Chinese Remainder Theorem. To compute the bivariate GCD over
`\mathbb{Z}_p`, the polynomials `f \; \mathrm{mod} \, p` and
`g \; \mathrm{mod} \, p` are evaluated at `y = a` for certain
`a \in \mathbb{Z}_p` and then their univariate GCD in `\mathbb{Z}_p[x]`
is computed. Interpolating those yields the bivariate GCD in
`\mathbb{Z}_p[x, y]`. To verify the result in `\mathbb{Z}[x, y]`, trial
division is done, but only for candidates which are very likely the
desired GCD.
Parameters
==========
f : PolyElement
bivariate integer polynomial
g : PolyElement
bivariate integer polynomial
Returns
=======
h : PolyElement
GCD of the polynomials `f` and `g`
cff : PolyElement
cofactor of `f`, i.e. `\frac{f}{h}`
cfg : PolyElement
cofactor of `g`, i.e. `\frac{g}{h}`
Examples
========
>>> from sympy.polys.modulargcd import modgcd_bivariate
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2 - y**2
>>> g = x**2 + 2*x*y + y**2
>>> h, cff, cfg = modgcd_bivariate(f, g)
>>> h, cff, cfg
(x + y, x - y, x + y)
>>> cff * h == f
True
>>> cfg * h == g
True
>>> f = x**2*y - x**2 - 4*y + 4
>>> g = x + 2
>>> h, cff, cfg = modgcd_bivariate(f, g)
>>> h, cff, cfg
(x + 2, x*y - x - 2*y + 2, 1)
>>> cff * h == f
True
>>> cfg * h == g
True
References
==========
1. [Monagan00]_
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
result = _trivial_gcd(f, g)
if result is not None:
return result
ring = f.ring
cf, f = f.primitive()
cg, g = g.primitive()
ch = ring.domain.gcd(cf, cg)
xbound, ycontbound = _degree_bound_bivariate(f, g)
if xbound == ycontbound == 0:
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch)
fswap = _swap(f, 1)
gswap = _swap(g, 1)
degyf = fswap.degree()
degyg = gswap.degree()
ybound, xcontbound = _degree_bound_bivariate(fswap, gswap)
if ybound == xcontbound == 0:
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch)
# TODO: to improve performance, choose the main variable here
gamma1 = ring.domain.gcd(f.LC, g.LC)
gamma2 = ring.domain.gcd(fswap.LC, gswap.LC)
badprimes = gamma1 * gamma2
m = 1
p = 1
while True:
p = nextprime(p)
while badprimes % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
contfp, fp = _primitive(fp, p)
contgp, gp = _primitive(gp, p)
conthp = _gf_gcd(contfp, contgp, p) # monic polynomial in Z_p[y]
degconthp = conthp.degree()
if degconthp > ycontbound:
continue
elif degconthp < ycontbound:
m = 1
ycontbound = degconthp
continue
# polynomial in Z_p[y]
delta = _gf_gcd(_LC(fp), _LC(gp), p)
degcontfp = contfp.degree()
degcontgp = contgp.degree()
degdelta = delta.degree()
N = min(degyf - degcontfp, degyg - degcontgp,
ybound - ycontbound + degdelta) + 1
if p < N:
continue
n = 0
evalpoints = []
hpeval = []
unlucky = False
for a in range(p):
deltaa = delta.evaluate(0, a)
if not deltaa % p:
continue
fpa = fp.evaluate(1, a).trunc_ground(p)
gpa = gp.evaluate(1, a).trunc_ground(p)
hpa = _gf_gcd(fpa, gpa, p) # monic polynomial in Z_p[x]
deghpa = hpa.degree()
if deghpa > xbound:
continue
elif deghpa < xbound:
m = 1
xbound = deghpa
unlucky = True
break
hpa = hpa.mul_ground(deltaa).trunc_ground(p)
evalpoints.append(a)
hpeval.append(hpa)
n += 1
if n == N:
break
if unlucky:
continue
if n < N:
continue
hp = _interpolate_multivariate(evalpoints, hpeval, ring, 1, p)
hp = _primitive(hp, p)[1]
hp = hp * conthp.set_ring(ring)
degyhp = hp.degree(1)
if degyhp > ybound:
continue
if degyhp < ybound:
m = 1
ybound = degyhp
continue
hp = hp.mul_ground(gamma1).trunc_ground(p)
if m == 1:
m = p
hlastm = hp
continue
hm = _chinese_remainder_reconstruction_multivariate(hp, hlastm, p, m)
m *= p
if not hm == hlastm:
hlastm = hm
continue
h = hm.quo_ground(hm.content())
fquo, frem = f.div(h)
gquo, grem = g.div(h)
if not frem and not grem:
if h.LC < 0:
ch = -ch
h = h.mul_ground(ch)
cff = fquo.mul_ground(cf // ch)
cfg = gquo.mul_ground(cg // ch)
return h, cff, cfg
def _modgcd_multivariate_p(f, g, p, degbound, contbound):
r"""
Compute the GCD of two polynomials in
`\mathbb{Z}_p[x0, \ldots, x{k-1}]`.
The algorithm reduces the problem step by step by evaluating the
polynomials `f` and `g` at `x_{k-1} = a` for suitable
`a \in \mathbb{Z}_p` and then calls itself recursively to compute the GCD
in `\mathbb{Z}_p[x_0, \ldots, x_{k-2}]`. If these recursive calls are
succsessful for enough evaluation points, the GCD in `k` variables is
interpolated, otherwise the algorithm returns ``None``. Every time a GCD
or a content is computed, their degrees are compared with the bounds. If
a degree greater then the bound is encountered, then the current call
returns ``None`` and a new evaluation point has to be chosen. If at some
point the degree is smaller, the correspondent bound is updated and the
algorithm fails.
Parameters
==========
f : PolyElement
multivariate integer polynomial with coefficients in `\mathbb{Z}_p`
g : PolyElement
multivariate integer polynomial with coefficients in `\mathbb{Z}_p`
p : Integer
prime number, modulus of `f` and `g`
degbound : list of Integer objects
``degbound[i]`` is an upper bound for the degree of the GCD of `f`
and `g` in the variable `x_i`
contbound : list of Integer objects
``contbound[i]`` is an upper bound for the degree of the content of
the GCD in `\mathbb{Z}_p[x_i][x_0, \ldots, x_{i-1}]`,
``contbound[0]`` is not used can therefore be chosen
arbitrarily.
Returns
=======
h : PolyElement
GCD of the polynomials `f` and `g` or ``None``
References
==========
1. [Monagan00]_
2. [Brown71]_
"""
ring = f.ring
k = ring.ngens
if k == 1:
h = _gf_gcd(f, g, p).trunc_ground(p)
degh = h.degree()
if degh > degbound[0]:
return None
if degh < degbound[0]:
degbound[0] = degh
raise ModularGCDFailed
return h
degyf = f.degree(k-1)
degyg = g.degree(k-1)
contf, f = _primitive(f, p)
contg, g = _primitive(g, p)
conth = _gf_gcd(contf, contg, p) # polynomial in Z_p[y]
degcontf = contf.degree()
degcontg = contg.degree()
degconth = conth.degree()
if degconth > contbound[k-1]:
return None
if degconth < contbound[k-1]:
contbound[k-1] = degconth
raise ModularGCDFailed
lcf = _LC(f)
lcg = _LC(g)
delta = _gf_gcd(lcf, lcg, p) # polynomial in Z_p[y]
evaltest = delta
for i in range(k-1):
evaltest *= _gf_gcd(_LC(_swap(f, i)), _LC(_swap(g, i)), p)
degdelta = delta.degree()
N = min(degyf - degcontf, degyg - degcontg,
degbound[k-1] - contbound[k-1] + degdelta) + 1
if p < N:
return None
n = 0
d = 0
evalpoints = []
heval = []
points = set(range(p))
while points:
a = random.sample(points, 1)[0]
points.remove(a)
if not evaltest.evaluate(0, a) % p:
continue
deltaa = delta.evaluate(0, a) % p
fa = f.evaluate(k-1, a).trunc_ground(p)
ga = g.evaluate(k-1, a).trunc_ground(p)
# polynomials in Z_p[x_0, ..., x_{k-2}]
ha = _modgcd_multivariate_p(fa, ga, p, degbound, contbound)
if ha is None:
d += 1
if d > n:
return None
continue
if ha.is_ground:
h = conth.set_ring(ring).trunc_ground(p)
return h
ha = ha.mul_ground(deltaa).trunc_ground(p)
evalpoints.append(a)
heval.append(ha)
n += 1
if n == N:
h = _interpolate_multivariate(evalpoints, heval, ring, k-1, p)
h = _primitive(h, p)[1] * conth.set_ring(ring)
degyh = h.degree(k-1)
if degyh > degbound[k-1]:
return None
if degyh < degbound[k-1]:
degbound[k-1] = degyh
raise ModularGCDFailed
return h
return None
[docs]def modgcd_multivariate(f, g):
r"""
Compute the GCD of two polynomials in `\mathbb{Z}[x_0, \ldots, x_{k-1}]`
using a modular algorithm.
The algorithm computes the GCD of two multivariate integer polynomials
`f` and `g` by calculating the GCD in
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` for suitable primes `p` and then
reconstructing the coefficients with the Chinese Remainder Theorem. To
compute the multivariate GCD over `\mathbb{Z}_p` the recursive
subroutine ``_modgcd_multivariate_p`` is used. To verify the result in
`\mathbb{Z}[x_0, \ldots, x_{k-1}]`, trial division is done, but only for
candidates which are very likely the desired GCD.
Parameters
==========
f : PolyElement
multivariate integer polynomial
g : PolyElement
multivariate integer polynomial
Returns
=======
h : PolyElement
GCD of the polynomials `f` and `g`
cff : PolyElement
cofactor of `f`, i.e. `\frac{f}{h}`
cfg : PolyElement
cofactor of `g`, i.e. `\frac{g}{h}`
Examples
========
>>> from sympy.polys.modulargcd import modgcd_multivariate
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2 - y**2
>>> g = x**2 + 2*x*y + y**2
>>> h, cff, cfg = modgcd_multivariate(f, g)
>>> h, cff, cfg
(x + y, x - y, x + y)
>>> cff * h == f
True
>>> cfg * h == g
True
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x*z**2 - y*z**2
>>> g = x**2*z + z
>>> h, cff, cfg = modgcd_multivariate(f, g)
>>> h, cff, cfg
(z, x*z - y*z, x**2 + 1)
>>> cff * h == f
True
>>> cfg * h == g
True
References
==========
1. [Monagan00]_
2. [Brown71]_
See also
========
_modgcd_multivariate_p
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
result = _trivial_gcd(f, g)
if result is not None:
return result
ring = f.ring
k = ring.ngens
# divide out integer content
cf, f = f.primitive()
cg, g = g.primitive()
ch = ring.domain.gcd(cf, cg)
gamma = ring.domain.gcd(f.LC, g.LC)
badprimes = ring.domain.one
for i in range(k):
badprimes *= ring.domain.gcd(_swap(f, i).LC, _swap(g, i).LC)
degbound = [min(fdeg, gdeg) for fdeg, gdeg in zip(f.degrees(), g.degrees())]
contbound = list(degbound)
m = 1
p = 1
while True:
p = nextprime(p)
while badprimes % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
try:
# monic GCD of fp, gp in Z_p[x_0, ..., x_{k-2}, y]
hp = _modgcd_multivariate_p(fp, gp, p, degbound, contbound)
except ModularGCDFailed:
m = 1
continue
if hp is None:
continue
hp = hp.mul_ground(gamma).trunc_ground(p)
if m == 1:
m = p
hlastm = hp
continue
hm = _chinese_remainder_reconstruction_multivariate(hp, hlastm, p, m)
m *= p
if not hm == hlastm:
hlastm = hm
continue
h = hm.primitive()[1]
fquo, frem = f.div(h)
gquo, grem = g.div(h)
if not frem and not grem:
if h.LC < 0:
ch = -ch
h = h.mul_ground(ch)
cff = fquo.mul_ground(cf // ch)
cfg = gquo.mul_ground(cg // ch)
return h, cff, cfg
def _gf_div(f, g, p):
r"""
Compute `\frac f g` modulo `p` for two univariate polynomials over
`\mathbb Z_p`.
"""
ring = f.ring
densequo, denserem = gf_div(f.to_dense(), g.to_dense(), p, ring.domain)
return ring.from_dense(densequo), ring.from_dense(denserem)
def _rational_function_reconstruction(c, p, m):
r"""
Reconstruct a rational function `\frac a b` in `\mathbb Z_p(t)` from
.. math::
c = \frac a b \; \mathrm{mod} \, m,
where `c` and `m` are polynomials in `\mathbb Z_p[t]` and `m` has
positive degree.
The algorithm is based on the Euclidean Algorithm. In general, `m` is
not irreducible, so it is possible that `b` is not invertible modulo
`m`. In that case ``None`` is returned.
Parameters
==========
c : PolyElement
univariate polynomial in `\mathbb Z[t]`
p : Integer
prime number
m : PolyElement
modulus, not necessarily irreducible
Returns
=======
frac : FracElement
either `\frac a b` in `\mathbb Z(t)` or ``None``
References
==========
1. [Hoeij04]_
"""
ring = c.ring
domain = ring.domain
M = m.degree()
N = M // 2
D = M - N - 1
r0, s0 = m, ring.zero
r1, s1 = c, ring.one
while r1.degree() > N:
quo = _gf_div(r0, r1, p)[0]
r0, r1 = r1, (r0 - quo*r1).trunc_ground(p)
s0, s1 = s1, (s0 - quo*s1).trunc_ground(p)
a, b = r1, s1
if b.degree() > D or _gf_gcd(b, m, p) != 1:
return None
lc = b.LC
if lc != 1:
lcinv = domain.invert(lc, p)
a = a.mul_ground(lcinv).trunc_ground(p)
b = b.mul_ground(lcinv).trunc_ground(p)
field = ring.to_field()
return field(a) / field(b)
def _rational_reconstruction_func_coeffs(hm, p, m, ring, k):
r"""
Reconstruct every coefficient `c_h` of a polynomial `h` in
`\mathbb Z_p(t_k)[t_1, \ldots, t_{k-1}][x, z]` from the corresponding
coefficient `c_{h_m}` of a polynomial `h_m` in
`\mathbb Z_p[t_1, \ldots, t_k][x, z] \cong \mathbb Z_p[t_k][t_1, \ldots, t_{k-1}][x, z]`
such that
.. math::
c_{h_m} = c_h \; \mathrm{mod} \, m,
where `m \in \mathbb Z_p[t]`.
The reconstruction is based on the Euclidean Algorithm. In general, `m`
is not irreducible, so it is possible that this fails for some
coefficient. In that case ``None`` is returned.
Parameters
==========
hm : PolyElement
polynomial in `\mathbb Z[t_1, \ldots, t_k][x, z]`
p : Integer
prime number, modulus of `\mathbb Z_p`
m : PolyElement
modulus, polynomial in `\mathbb Z[t]`, not necessarily irreducible
ring : PolyRing
`\mathbb Z(t_k)[t_1, \ldots, t_{k-1}][x, z]`, `h` will be an
element of this ring
k : Integer
index of the parameter `t_k` which will be reconstructed
Returns
=======
h : PolyElement
reconstructed polynomial in
`\mathbb Z(t_k)[t_1, \ldots, t_{k-1}][x, z]` or ``None``
See also
========
_rational_function_reconstruction
"""
h = ring.zero
for monom, coeff in hm.iterterms():
if k == 0:
coeffh = _rational_function_reconstruction(coeff, p, m)
if not coeffh:
return None
else:
coeffh = ring.domain.zero
for mon, c in coeff.drop_to_ground(k).iterterms():
ch = _rational_function_reconstruction(c, p, m)
if not ch:
return None
coeffh[mon] = ch
h[monom] = coeffh
return h
def _gf_gcdex(f, g, p):
r"""
Extended Euclidean Algorithm for two univariate polynomials over
`\mathbb Z_p`.
Returns polynomials `s, t` and `h`, such that `h` is the GCD of `f` and
`g` and `sf + tg = h \; \mathrm{mod} \, p`.
"""
ring = f.ring
s, t, h = gf_gcdex(f.to_dense(), g.to_dense(), p, ring.domain)
return ring.from_dense(s), ring.from_dense(t), ring.from_dense(h)
def _trunc(f, minpoly, p):
r"""
Compute the reduced representation of a polynomial `f` in
`\mathbb Z_p[z] / (\check m_{\alpha}(z))[x]`
Parameters
==========
f : PolyElement
polynomial in `\mathbb Z[x, z]`
minpoly : PolyElement
polynomial `\check m_{\alpha} \in \mathbb Z[z]`, not necessarily
irreducible
p : Integer
prime number, modulus of `\mathbb Z_p`
Returns
=======
ftrunc : PolyElement
polynomial in `\mathbb Z[x, z]`, reduced modulo
`\check m_{\alpha}(z)` and `p`
"""
ring = f.ring
minpoly = minpoly.set_ring(ring)
p_ = ring.ground_new(p)
return f.trunc_ground(p).rem([minpoly, p_]).trunc_ground(p)
def _euclidean_algorithm(f, g, minpoly, p):
r"""
Compute the monic GCD of two univariate polynomials in
`\mathbb{Z}_p[z]/(\check m_{\alpha}(z))[x]` with the Euclidean
Algorithm.
In general, `\check m_{\alpha}(z)` is not irreducible, so it is possible
that some leading coefficient is not invertible modulo
`\check m_{\alpha}(z)`. In that case ``None`` is returned.
Parameters
==========
f, g : PolyElement
polynomials in `\mathbb Z[x, z]`
minpoly : PolyElement
polynomial in `\mathbb Z[z]`, not necessarily irreducible
p : Integer
prime number, modulus of `\mathbb Z_p`
Returns
=======
h : PolyElement
GCD of `f` and `g` in `\mathbb Z[z, x]` or ``None``, coefficients
are in `\left[ -\frac{p-1} 2, \frac{p-1} 2 \right]`
"""
ring = f.ring
f = _trunc(f, minpoly, p)
g = _trunc(g, minpoly, p)
while g:
rem = f
deg = g.degree(0) # degree in x
lcinv, _, gcd = _gf_gcdex(ring.dmp_LC(g), minpoly, p)
if not gcd == 1:
return None
while True:
degrem = rem.degree(0) # degree in x
if degrem < deg:
break
quo = (lcinv * ring.dmp_LC(rem)).set_ring(ring)
rem = _trunc(rem - g.mul_monom((degrem - deg, 0))*quo, minpoly, p)
f = g
g = rem
lcfinv = _gf_gcdex(ring.dmp_LC(f), minpoly, p)[0].set_ring(ring)
return _trunc(f * lcfinv, minpoly, p)
def _trial_division(f, h, minpoly, p=None):
r"""
Check if `h` divides `f` in
`\mathbb K[t_1, \ldots, t_k][z]/(m_{\alpha}(z))`, where `\mathbb K` is
either `\mathbb Q` or `\mathbb Z_p`.
This algorithm is based on pseudo division and does not use any
fractions. By default `\mathbb K` is `\mathbb Q`, if a prime number `p`
is given, `\mathbb Z_p` is chosen instead.
Parameters
==========
f, h : PolyElement
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]`
minpoly : PolyElement
polynomial `m_{\alpha}(z)` in `\mathbb Z[t_1, \ldots, t_k][z]`
p : Integer or None
if `p` is given, `\mathbb K` is set to `\mathbb Z_p` instead of
`\mathbb Q`, default is ``None``
Returns
=======
rem : PolyElement
remainder of `\frac f h`
References
==========
.. [1] [Hoeij02]_
"""
ring = f.ring
zxring = ring.clone(symbols=(ring.symbols[1], ring.symbols[0]))
minpoly = minpoly.set_ring(ring)
rem = f
degrem = rem.degree()
degh = h.degree()
degm = minpoly.degree(1)
lch = _LC(h).set_ring(ring)
lcm = minpoly.LC
while rem and degrem >= degh:
# polynomial in Z[t_1, ..., t_k][z]
lcrem = _LC(rem).set_ring(ring)
rem = rem*lch - h.mul_monom((degrem - degh, 0))*lcrem
if p:
rem = rem.trunc_ground(p)
degrem = rem.degree(1)
while rem and degrem >= degm:
# polynomial in Z[t_1, ..., t_k][x]
lcrem = _LC(rem.set_ring(zxring)).set_ring(ring)
rem = rem.mul_ground(lcm) - minpoly.mul_monom((0, degrem - degm))*lcrem
if p:
rem = rem.trunc_ground(p)
degrem = rem.degree(1)
degrem = rem.degree()
return rem
def _evaluate_ground(f, i, a):
r"""
Evaluate a polynomial `f` at `a` in the `i`-th variable of the ground
domain.
"""
ring = f.ring.clone(domain=f.ring.domain.ring.drop(i))
fa = ring.zero
for monom, coeff in f.iterterms():
fa[monom] = coeff.evaluate(i, a)
return fa
def _func_field_modgcd_p(f, g, minpoly, p):
r"""
Compute the GCD of two polynomials `f` and `g` in
`\mathbb Z_p(t_1, \ldots, t_k)[z]/(\check m_\alpha(z))[x]`.
The algorithm reduces the problem step by step by evaluating the
polynomials `f` and `g` at `t_k = a` for suitable `a \in \mathbb Z_p`
and then calls itself recursively to compute the GCD in
`\mathbb Z_p(t_1, \ldots, t_{k-1})[z]/(\check m_\alpha(z))[x]`. If these
recursive calls are successful, the GCD over `k` variables is
interpolated, otherwise the algorithm returns ``None``. After
interpolation, Rational Function Reconstruction is used to obtain the
correct coefficients. If this fails, a new evaluation point has to be
chosen, otherwise the desired polynomial is obtained by clearing
denominators. The result is verified with a fraction free trial
division.
Parameters
==========
f, g : PolyElement
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]`
minpoly : PolyElement
polynomial in `\mathbb Z[t_1, \ldots, t_k][z]`, not necessarily
irreducible
p : Integer
prime number, modulus of `\mathbb Z_p`
Returns
=======
h : PolyElement
primitive associate in `\mathbb Z[t_1, \ldots, t_k][x, z]` of the
GCD of the polynomials `f` and `g` or ``None``, coefficients are
in `\left[ -\frac{p-1} 2, \frac{p-1} 2 \right]`
References
==========
1. [Hoeij04]_
"""
ring = f.ring
domain = ring.domain # Z[t_1, ..., t_k]
if isinstance(domain, PolynomialRing):
k = domain.ngens
else:
return _euclidean_algorithm(f, g, minpoly, p)
if k == 1:
qdomain = domain.ring.to_field()
else:
qdomain = domain.ring.drop_to_ground(k - 1)
qdomain = qdomain.clone(domain=qdomain.domain.ring.to_field())
qring = ring.clone(domain=qdomain) # = Z(t_k)[t_1, ..., t_{k-1}][x, z]
n = 1
d = 1
# polynomial in Z_p[t_1, ..., t_k][z]
gamma = ring.dmp_LC(f) * ring.dmp_LC(g)
# polynomial in Z_p[t_1, ..., t_k]
delta = minpoly.LC
evalpoints = []
heval = []
LMlist = []
points = set(range(p))
while points:
a = random.sample(points, 1)[0]
points.remove(a)
if k == 1:
test = delta.evaluate(k-1, a) % p == 0
else:
test = delta.evaluate(k-1, a).trunc_ground(p) == 0
if test:
continue
gammaa = _evaluate_ground(gamma, k-1, a)
minpolya = _evaluate_ground(minpoly, k-1, a)
if gammaa.rem([minpolya, gammaa.ring(p)]) == 0:
continue
fa = _evaluate_ground(f, k-1, a)
ga = _evaluate_ground(g, k-1, a)
# polynomial in Z_p[x, t_1, ..., t_{k-1}, z]/(minpoly)
ha = _func_field_modgcd_p(fa, ga, minpolya, p)
if ha is None:
d += 1
if d > n:
return None
continue
if ha == 1:
return ha
LM = [ha.degree()] + [0]*(k-1)
if k > 1:
for monom, coeff in ha.iterterms():
if monom[0] == LM[0] and coeff.LM > tuple(LM[1:]):
LM[1:] = coeff.LM
evalpoints_a = [a]
heval_a = [ha]
if k == 1:
m = qring.domain.get_ring().one
else:
m = qring.domain.domain.get_ring().one
t = m.ring.gens[0]
for b, hb, LMhb in zip(evalpoints, heval, LMlist):
if LMhb == LM:
evalpoints_a.append(b)
heval_a.append(hb)
m *= (t - b)
m = m.trunc_ground(p)
evalpoints.append(a)
heval.append(ha)
LMlist.append(LM)
n += 1
# polynomial in Z_p[t_1, ..., t_k][x, z]
h = _interpolate_multivariate(evalpoints_a, heval_a, ring, k-1, p, ground=True)
# polynomial in Z_p(t_k)[t_1, ..., t_{k-1}][x, z]
h = _rational_reconstruction_func_coeffs(h, p, m, qring, k-1)
if h is None:
continue
if k == 1:
dom = qring.domain.field
den = dom.ring.one
for coeff in h.itercoeffs():
den = dom.ring.from_dense(gf_lcm(den.to_dense(), coeff.denom.to_dense(),
p, dom.domain))
else:
dom = qring.domain.domain.field
den = dom.ring.one
for coeff in h.itercoeffs():
for c in coeff.itercoeffs():
den = dom.ring.from_dense(gf_lcm(den.to_dense(), c.denom.to_dense(),
p, dom.domain))
den = qring.domain_new(den.trunc_ground(p))
h = ring(h.mul_ground(den).as_expr()).trunc_ground(p)
if not _trial_division(f, h, minpoly, p) and not _trial_division(g, h, minpoly, p):
return h
return None
def _integer_rational_reconstruction(c, m, domain):
r"""
Reconstruct a rational number `\frac a b` from
.. math::
c = \frac a b \; \mathrm{mod} \, m,
where `c` and `m` are integers.
The algorithm is based on the Euclidean Algorithm. In general, `m` is
not a prime number, so it is possible that `b` is not invertible modulo
`m`. In that case ``None`` is returned.
Parameters
==========
c : Integer
`c = \frac a b \; \mathrm{mod} \, m`
m : Integer
modulus, not necessarily prime
domain : IntegerRing
`a, b, c` are elements of ``domain``
Returns
=======
frac : Rational
either `\frac a b` in `\mathbb Q` or ``None``
References
==========
1. [Wang81]_
"""
if c < 0:
c += m
r0, s0 = m, domain.zero
r1, s1 = c, domain.one
bound = sqrt(m / 2) # still correct if replaced by ZZ.sqrt(m // 2) ?
while r1 >= bound:
quo = r0 // r1
r0, r1 = r1, r0 - quo*r1
s0, s1 = s1, s0 - quo*s1
if abs(s1) >= bound:
return None
if s1 < 0:
a, b = -r1, -s1
elif s1 > 0:
a, b = r1, s1
else:
return None
field = domain.get_field()
return field(a) / field(b)
def _rational_reconstruction_int_coeffs(hm, m, ring):
r"""
Reconstruct every rational coefficient `c_h` of a polynomial `h` in
`\mathbb Q[t_1, \ldots, t_k][x, z]` from the corresponding integer
coefficient `c_{h_m}` of a polynomial `h_m` in
`\mathbb Z[t_1, \ldots, t_k][x, z]` such that
.. math::
c_{h_m} = c_h \; \mathrm{mod} \, m,
where `m \in \mathbb Z`.
The reconstruction is based on the Euclidean Algorithm. In general,
`m` is not a prime number, so it is possible that this fails for some
coefficient. In that case ``None`` is returned.
Parameters
==========
hm : PolyElement
polynomial in `\mathbb Z[t_1, \ldots, t_k][x, z]`
m : Integer
modulus, not necessarily prime
ring : PolyRing
`\mathbb Q[t_1, \ldots, t_k][x, z]`, `h` will be an element of this
ring
Returns
=======
h : PolyElement
reconstructed polynomial in `\mathbb Q[t_1, \ldots, t_k][x, z]` or
``None``
See also
========
_integer_rational_reconstruction
"""
h = ring.zero
if isinstance(ring.domain, PolynomialRing):
reconstruction = _rational_reconstruction_int_coeffs
domain = ring.domain.ring
else:
reconstruction = _integer_rational_reconstruction
domain = hm.ring.domain
for monom, coeff in hm.iterterms():
coeffh = reconstruction(coeff, m, domain)
if not coeffh:
return None
h[monom] = coeffh
return h
def _func_field_modgcd_m(f, g, minpoly):
r"""
Compute the GCD of two polynomials in
`\mathbb Q(t_1, \ldots, t_k)[z]/(m_{\alpha}(z))[x]` using a modular
algorithm.
The algorithm computes the GCD of two polynomials `f` and `g` by
calculating the GCD in
`\mathbb Z_p(t_1, \ldots, t_k)[z] / (\check m_{\alpha}(z))[x]` for
suitable primes `p` and the primitive associate `\check m_{\alpha}(z)`
of `m_{\alpha}(z)`. Then the coefficients are reconstructed with the
Chinese Remainder Theorem and Rational Reconstruction. To compute the
GCD over `\mathbb Z_p(t_1, \ldots, t_k)[z] / (\check m_{\alpha})[x]`,
the recursive subroutine ``_func_field_modgcd_p`` is used. To verify the
result in `\mathbb Q(t_1, \ldots, t_k)[z] / (m_{\alpha}(z))[x]`, a
fraction free trial division is used.
Parameters
==========
f, g : PolyElement
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]`
minpoly : PolyElement
irreducible polynomial in `\mathbb Z[t_1, \ldots, t_k][z]`
Returns
=======
h : PolyElement
the primitive associate in `\mathbb Z[t_1, \ldots, t_k][x, z]` of
the GCD of `f` and `g`
Examples
========
>>> from sympy.polys.modulargcd import _func_field_modgcd_m
>>> from sympy.polys import ring, ZZ
>>> R, x, z = ring('x, z', ZZ)
>>> minpoly = (z**2 - 2).drop(0)
>>> f = x**2 + 2*x*z + 2
>>> g = x + z
>>> _func_field_modgcd_m(f, g, minpoly)
x + z
>>> D, t = ring('t', ZZ)
>>> R, x, z = ring('x, z', D)
>>> minpoly = (z**2-3).drop(0)
>>> f = x**2 + (t + 1)*x*z + 3*t
>>> g = x*z + 3*t
>>> _func_field_modgcd_m(f, g, minpoly)
x + t*z
References
==========
1. [Hoeij04]_
See also
========
_func_field_modgcd_p
"""
ring = f.ring
domain = ring.domain
if isinstance(domain, PolynomialRing):
k = domain.ngens
QQdomain = domain.ring.clone(domain=domain.domain.get_field())
QQring = ring.clone(domain=QQdomain)
else:
k = 0
QQring = ring.clone(domain=ring.domain.get_field())
cf, f = f.primitive()
cg, g = g.primitive()
# polynomial in Z[t_1, ..., t_k][z]
gamma = ring.dmp_LC(f) * ring.dmp_LC(g)
# polynomial in Z[t_1, ..., t_k]
delta = minpoly.LC
p = 1
primes = []
hplist = []
LMlist = []
while True:
p = nextprime(p)
if gamma.trunc_ground(p) == 0:
continue
if k == 0:
test = (delta % p == 0)
else:
test = (delta.trunc_ground(p) == 0)
if test:
continue
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
minpolyp = minpoly.trunc_ground(p)
hp = _func_field_modgcd_p(fp, gp, minpolyp, p)
if hp is None:
continue
if hp == 1:
return ring.one
LM = [hp.degree()] + [0]*k
if k > 0:
for monom, coeff in hp.iterterms():
if monom[0] == LM[0] and coeff.LM > tuple(LM[1:]):
LM[1:] = coeff.LM
hm = hp
m = p
for q, hq, LMhq in zip(primes, hplist, LMlist):
if LMhq == LM:
hm = _chinese_remainder_reconstruction_multivariate(hq, hm, q, m)
m *= q
primes.append(p)
hplist.append(hp)
LMlist.append(LM)
hm = _rational_reconstruction_int_coeffs(hm, m, QQring)
if hm is None:
continue
if k == 0:
h = hm.clear_denoms()[1]
else:
den = domain.domain.one
for coeff in hm.itercoeffs():
den = domain.domain.lcm(den, coeff.clear_denoms()[0])
h = hm.mul_ground(den)
# convert back to Z[t_1, ..., t_k][x, z] from Q[t_1, ..., t_k][x, z]
h = h.set_ring(ring)
h = h.primitive()[1]
if not (_trial_division(f.mul_ground(cf), h, minpoly) or
_trial_division(g.mul_ground(cg), h, minpoly)):
return h
def _to_ZZ_poly(f, ring):
r"""
Compute an associate of a polynomial
`f \in \mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` in
`\mathbb Z[x_1, \ldots, x_{n-1}][z] / (\check m_{\alpha}(z))[x_0]`,
where `\check m_{\alpha}(z) \in \mathbb Z[z]` is the primitive associate
of the minimal polynomial `m_{\alpha}(z)` of `\alpha` over
`\mathbb Q`.
Parameters
==========
f : PolyElement
polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
ring : PolyRing
`\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]`
Returns
=======
f_ : PolyElement
associate of `f` in
`\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]`
"""
f_ = ring.zero
if isinstance(ring.domain, PolynomialRing):
domain = ring.domain.domain
else:
domain = ring.domain
den = domain.one
for coeff in f.itercoeffs():
for c in coeff.rep:
if c:
den = domain.lcm(den, c.denominator)
for monom, coeff in f.iterterms():
coeff = coeff.rep
m = ring.domain.one
if isinstance(ring.domain, PolynomialRing):
m = m.mul_monom(monom[1:])
n = len(coeff)
for i in range(n):
if coeff[i]:
c = domain(coeff[i] * den) * m
if (monom[0], n-i-1) not in f_:
f_[(monom[0], n-i-1)] = c
else:
f_[(monom[0], n-i-1)] += c
return f_
def _to_ANP_poly(f, ring):
r"""
Convert a polynomial
`f \in \mathbb Z[x_1, \ldots, x_{n-1}][z]/(\check m_{\alpha}(z))[x_0]`
to a polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`,
where `\check m_{\alpha}(z) \in \mathbb Z[z]` is the primitive associate
of the minimal polynomial `m_{\alpha}(z)` of `\alpha` over
`\mathbb Q`.
Parameters
==========
f : PolyElement
polynomial in `\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]`
ring : PolyRing
`\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
Returns
=======
f_ : PolyElement
polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
"""
domain = ring.domain
f_ = ring.zero
if isinstance(f.ring.domain, PolynomialRing):
for monom, coeff in f.iterterms():
for mon, coef in coeff.iterterms():
m = (monom[0],) + mon
c = domain([domain.domain(coef)] + [0]*monom[1])
if m not in f_:
f_[m] = c
else:
f_[m] += c
else:
for monom, coeff in f.iterterms():
m = (monom[0],)
c = domain([domain.domain(coeff)] + [0]*monom[1])
if m not in f_:
f_[m] = c
else:
f_[m] += c
return f_
def _minpoly_from_dense(minpoly, ring):
r"""
Change representation of the minimal polynomial from ``DMP`` to
``PolyElement`` for a given ring.
"""
minpoly_ = ring.zero
for monom, coeff in minpoly.terms():
minpoly_[monom] = ring.domain(coeff)
return minpoly_
def _primitive_in_x0(f):
r"""
Compute the content in `x_0` and the primitive part of a polynomial `f`
in
`\mathbb Q(\alpha)[x_0, x_1, \ldots, x_{n-1}] \cong \mathbb Q(\alpha)[x_1, \ldots, x_{n-1}][x_0]`.
"""
fring = f.ring
ring = fring.drop_to_ground(*range(1, fring.ngens))
dom = ring.domain.ring
f_ = ring(f.as_expr())
cont = dom.zero
for coeff in f_.itercoeffs():
cont = func_field_modgcd(cont, coeff)[0]
if cont == dom.one:
return cont, f
return cont, f.quo(cont.set_ring(fring))
# TODO: add support for algebraic function fields
[docs]def func_field_modgcd(f, g):
r"""
Compute the GCD of two polynomials `f` and `g` in
`\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` using a modular algorithm.
The algorithm first computes the primitive associate
`\check m_{\alpha}(z)` of the minimal polynomial `m_{\alpha}` in
`\mathbb{Z}[z]` and the primitive associates of `f` and `g` in
`\mathbb{Z}[x_1, \ldots, x_{n-1}][z]/(\check m_{\alpha})[x_0]`. Then it
computes the GCD in
`\mathbb Q(x_1, \ldots, x_{n-1})[z]/(m_{\alpha}(z))[x_0]`.
This is done by calculating the GCD in
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]` for
suitable primes `p` and then reconstructing the coefficients with the
Chinese Remainder Theorem and Rational Reconstuction. The GCD over
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]` is
computed with a recursive subroutine, which evaluates the polynomials at
`x_{n-1} = a` for suitable evaluation points `a \in \mathbb Z_p` and
then calls itself recursively until the ground domain does no longer
contain any parameters. For
`\mathbb{Z}_p[z]/(\check m_{\alpha}(z))[x_0]` the Euclidean Algorithm is
used. The results of those recursive calls are then interpolated and
Rational Function Reconstruction is used to obtain the correct
coefficients. The results, both in
`\mathbb Q(x_1, \ldots, x_{n-1})[z]/(m_{\alpha}(z))[x_0]` and
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]`, are
verified by a fraction free trial division.
Apart from the above GCD computation some GCDs in
`\mathbb Q(\alpha)[x_1, \ldots, x_{n-1}]` have to be calculated,
because treating the polynomials as univariate ones can result in
a spurious content of the GCD. For this ``func_field_modgcd`` is
called recursively.
Parameters
==========
f, g : PolyElement
polynomials in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
Returns
=======
h : PolyElement
monic GCD of the polynomials `f` and `g`
cff : PolyElement
cofactor of `f`, i.e. `\frac f h`
cfg : PolyElement
cofactor of `g`, i.e. `\frac g h`
Examples
========
>>> from sympy.polys.modulargcd import func_field_modgcd
>>> from sympy.polys import AlgebraicField, QQ, ring
>>> from sympy import sqrt
>>> A = AlgebraicField(QQ, sqrt(2))
>>> R, x = ring('x', A)
>>> f = x**2 - 2
>>> g = x + sqrt(2)
>>> h, cff, cfg = func_field_modgcd(f, g)
>>> h == x + sqrt(2)
True
>>> cff * h == f
True
>>> cfg * h == g
True
>>> R, x, y = ring('x, y', A)
>>> f = x**2 + 2*sqrt(2)*x*y + 2*y**2
>>> g = x + sqrt(2)*y
>>> h, cff, cfg = func_field_modgcd(f, g)
>>> h == x + sqrt(2)*y
True
>>> cff * h == f
True
>>> cfg * h == g
True
>>> f = x + sqrt(2)*y
>>> g = x + y
>>> h, cff, cfg = func_field_modgcd(f, g)
>>> h == R.one
True
>>> cff * h == f
True
>>> cfg * h == g
True
References
==========
1. [Hoeij04]_
"""
ring = f.ring
domain = ring.domain
n = ring.ngens
assert ring == g.ring and domain.is_Algebraic
result = _trivial_gcd(f, g)
if result is not None:
return result
z = Dummy('z')
ZZring = ring.clone(symbols=ring.symbols + (z,), domain=domain.domain.get_ring())
if n == 1:
f_ = _to_ZZ_poly(f, ZZring)
g_ = _to_ZZ_poly(g, ZZring)
minpoly = ZZring.drop(0).from_dense(domain.mod.rep)
h = _func_field_modgcd_m(f_, g_, minpoly)
h = _to_ANP_poly(h, ring)
else:
# contx0f in Q(a)[x_1, ..., x_{n-1}], f in Q(a)[x_0, ..., x_{n-1}]
contx0f, f = _primitive_in_x0(f)
contx0g, g = _primitive_in_x0(g)
contx0h = func_field_modgcd(contx0f, contx0g)[0]
ZZring_ = ZZring.drop_to_ground(*range(1, n))
f_ = _to_ZZ_poly(f, ZZring_)
g_ = _to_ZZ_poly(g, ZZring_)
minpoly = _minpoly_from_dense(domain.mod, ZZring_.drop(0))
h = _func_field_modgcd_m(f_, g_, minpoly)
h = _to_ANP_poly(h, ring)
contx0h_, h = _primitive_in_x0(h)
h *= contx0h.set_ring(ring)
f *= contx0f.set_ring(ring)
g *= contx0g.set_ring(ring)
h = h.quo_ground(h.LC)
return h, f.quo(h), g.quo(h)