"""Efficient functions for generating orthogonal polynomials. """
from __future__ import print_function, division
from sympy import Dummy
from sympy.core.compatibility import range
from sympy.polys.constructor import construct_domain
from sympy.polys.densearith import (
dup_mul, dup_mul_ground, dup_lshift, dup_sub, dup_add
)
from sympy.polys.domains import ZZ, QQ
from sympy.polys.polyclasses import DMP
from sympy.polys.polytools import Poly, PurePoly
from sympy.utilities import public
def dup_jacobi(n, a, b, K):
"""Low-level implementation of Jacobi polynomials. """
seq = [[K.one], [(a + b + K(2))/K(2), (a - b)/K(2)]]
for i in range(2, n + 1):
den = K(i)*(a + b + i)*(a + b + K(2)*i - K(2))
f0 = (a + b + K(2)*i - K.one) * (a*a - b*b) / (K(2)*den)
f1 = (a + b + K(2)*i - K.one) * (a + b + K(2)*i - K(2)) * (a + b + K(2)*i) / (K(2)*den)
f2 = (a + i - K.one)*(b + i - K.one)*(a + b + K(2)*i) / den
p0 = dup_mul_ground(seq[-1], f0, K)
p1 = dup_mul_ground(dup_lshift(seq[-1], 1, K), f1, K)
p2 = dup_mul_ground(seq[-2], f2, K)
seq.append(dup_sub(dup_add(p0, p1, K), p2, K))
return seq[n]
[docs]@public
def jacobi_poly(n, a, b, x=None, polys=False):
"""Generates Jacobi polynomial of degree `n` in `x`.
Parameters
==========
n : int
`n` decides the degree of polynomial
a
Lower limit of minimal domain for the list of
coefficients.
b
Upper limit of minimal domain for the list of
coefficients.
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n < 0:
raise ValueError("can't generate Jacobi polynomial of degree %s" % n)
K, v = construct_domain([a, b], field=True)
poly = DMP(dup_jacobi(int(n), v[0], v[1], K), K)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
def dup_gegenbauer(n, a, K):
"""Low-level implementation of Gegenbauer polynomials. """
seq = [[K.one], [K(2)*a, K.zero]]
for i in range(2, n + 1):
f1 = K(2) * (i + a - K.one) / i
f2 = (i + K(2)*a - K(2)) / i
p1 = dup_mul_ground(dup_lshift(seq[-1], 1, K), f1, K)
p2 = dup_mul_ground(seq[-2], f2, K)
seq.append(dup_sub(p1, p2, K))
return seq[n]
[docs]def gegenbauer_poly(n, a, x=None, polys=False):
"""Generates Gegenbauer polynomial of degree `n` in `x`.
Parameters
==========
n : int
`n` decides the degree of polynomial
x : optional
a
Decides minimal domain for the list of
coefficients.
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n < 0:
raise ValueError(
"can't generate Gegenbauer polynomial of degree %s" % n)
K, a = construct_domain(a, field=True)
poly = DMP(dup_gegenbauer(int(n), a, K), K)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
def dup_chebyshevt(n, K):
"""Low-level implementation of Chebyshev polynomials of the 1st kind. """
seq = [[K.one], [K.one, K.zero]]
for i in range(2, n + 1):
a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2), K)
seq.append(dup_sub(a, seq[-2], K))
return seq[n]
[docs]@public
def chebyshevt_poly(n, x=None, polys=False):
"""Generates Chebyshev polynomial of the first kind of degree `n` in `x`.
Parameters
==========
n : int
`n` decides the degree of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n < 0:
raise ValueError(
"can't generate 1st kind Chebyshev polynomial of degree %s" % n)
poly = DMP(dup_chebyshevt(int(n), ZZ), ZZ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
def dup_chebyshevu(n, K):
"""Low-level implementation of Chebyshev polynomials of the 2nd kind. """
seq = [[K.one], [K(2), K.zero]]
for i in range(2, n + 1):
a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2), K)
seq.append(dup_sub(a, seq[-2], K))
return seq[n]
[docs]@public
def chebyshevu_poly(n, x=None, polys=False):
"""Generates Chebyshev polynomial of the second kind of degree `n` in `x`.
Parameters
==========
n : int
`n` decides the degree of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n < 0:
raise ValueError(
"can't generate 2nd kind Chebyshev polynomial of degree %s" % n)
poly = DMP(dup_chebyshevu(int(n), ZZ), ZZ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
def dup_hermite(n, K):
"""Low-level implementation of Hermite polynomials. """
seq = [[K.one], [K(2), K.zero]]
for i in range(2, n + 1):
a = dup_lshift(seq[-1], 1, K)
b = dup_mul_ground(seq[-2], K(i - 1), K)
c = dup_mul_ground(dup_sub(a, b, K), K(2), K)
seq.append(c)
return seq[n]
[docs]@public
def hermite_poly(n, x=None, polys=False):
"""Generates Hermite polynomial of degree `n` in `x`.
Parameters
==========
n : int
`n` decides the degree of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n < 0:
raise ValueError("can't generate Hermite polynomial of degree %s" % n)
poly = DMP(dup_hermite(int(n), ZZ), ZZ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
def dup_legendre(n, K):
"""Low-level implementation of Legendre polynomials. """
seq = [[K.one], [K.one, K.zero]]
for i in range(2, n + 1):
a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2*i - 1, i), K)
b = dup_mul_ground(seq[-2], K(i - 1, i), K)
seq.append(dup_sub(a, b, K))
return seq[n]
[docs]@public
def legendre_poly(n, x=None, polys=False):
"""Generates Legendre polynomial of degree `n` in `x`.
Parameters
==========
n : int
`n` decides the degree of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n < 0:
raise ValueError("can't generate Legendre polynomial of degree %s" % n)
poly = DMP(dup_legendre(int(n), QQ), QQ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
def dup_laguerre(n, alpha, K):
"""Low-level implementation of Laguerre polynomials. """
seq = [[K.zero], [K.one]]
for i in range(1, n + 1):
a = dup_mul(seq[-1], [-K.one/i, alpha/i + K(2*i - 1)/i], K)
b = dup_mul_ground(seq[-2], alpha/i + K(i - 1)/i, K)
seq.append(dup_sub(a, b, K))
return seq[-1]
[docs]@public
def laguerre_poly(n, x=None, alpha=None, polys=False):
"""Generates Laguerre polynomial of degree `n` in `x`.
Parameters
==========
n : int
`n` decides the degree of polynomial
x : optional
alpha
Decides minimal domain for the list
of coefficients.
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n < 0:
raise ValueError("can't generate Laguerre polynomial of degree %s" % n)
if alpha is not None:
K, alpha = construct_domain(
alpha, field=True) # XXX: ground_field=True
else:
K, alpha = QQ, QQ(0)
poly = DMP(dup_laguerre(int(n), alpha, K), K)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
def dup_spherical_bessel_fn(n, K):
""" Low-level implementation of fn(n, x) """
seq = [[K.one], [K.one, K.zero]]
for i in range(2, n + 1):
a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2*i - 1), K)
seq.append(dup_sub(a, seq[-2], K))
return dup_lshift(seq[n], 1, K)
def dup_spherical_bessel_fn_minus(n, K):
""" Low-level implementation of fn(-n, x) """
seq = [[K.one, K.zero], [K.zero]]
for i in range(2, n + 1):
a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(3 - 2*i), K)
seq.append(dup_sub(a, seq[-2], K))
return seq[n]
def spherical_bessel_fn(n, x=None, polys=False):
"""
Coefficients for the spherical Bessel functions.
Those are only needed in the jn() function.
The coefficients are calculated from:
fn(0, z) = 1/z
fn(1, z) = 1/z**2
fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z)
Parameters
==========
n : int
`n` decides the degree of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
Examples
========
>>> from sympy.polys.orthopolys import spherical_bessel_fn as fn
>>> from sympy import Symbol
>>> z = Symbol("z")
>>> fn(1, z)
z**(-2)
>>> fn(2, z)
-1/z + 3/z**3
>>> fn(3, z)
-6/z**2 + 15/z**4
>>> fn(4, z)
1/z - 45/z**3 + 105/z**5
"""
if n < 0:
dup = dup_spherical_bessel_fn_minus(-int(n), ZZ)
else:
dup = dup_spherical_bessel_fn(int(n), ZZ)
poly = DMP(dup, ZZ)
if x is not None:
poly = Poly.new(poly, 1/x)
else:
poly = PurePoly.new(poly, 1/Dummy('x'))
return poly if polys else poly.as_expr()