"""OO layer for several polynomial representations. """
from __future__ import print_function, division
from sympy import oo
from sympy.core.sympify import CantSympify
from sympy.polys.polyerrors import CoercionFailed, NotReversible, NotInvertible
from sympy.polys.polyutils import PicklableWithSlots
class GenericPoly(PicklableWithSlots):
"""Base class for low-level polynomial representations. """
def ground_to_ring(f):
"""Make the ground domain a ring. """
return f.set_domain(f.dom.get_ring())
def ground_to_field(f):
"""Make the ground domain a field. """
return f.set_domain(f.dom.get_field())
def ground_to_exact(f):
"""Make the ground domain exact. """
return f.set_domain(f.dom.get_exact())
@classmethod
def _perify_factors(per, result, include):
if include:
coeff, factors = result
else:
coeff = result
factors = [ (per(g), k) for g, k in factors ]
if include:
return coeff, factors
else:
return factors
from sympy.polys.densebasic import (
dmp_validate,
dup_normal, dmp_normal,
dup_convert, dmp_convert,
dmp_from_sympy,
dup_strip,
dup_degree, dmp_degree_in,
dmp_degree_list,
dmp_negative_p,
dup_LC, dmp_ground_LC,
dup_TC, dmp_ground_TC,
dmp_ground_nth,
dmp_one, dmp_ground,
dmp_zero_p, dmp_one_p, dmp_ground_p,
dup_from_dict, dmp_from_dict,
dmp_to_dict,
dmp_deflate,
dmp_inject, dmp_eject,
dmp_terms_gcd,
dmp_list_terms, dmp_exclude,
dmp_slice_in, dmp_permute,
dmp_to_tuple,)
from sympy.polys.densearith import (
dmp_add_ground,
dmp_sub_ground,
dmp_mul_ground,
dmp_quo_ground,
dmp_exquo_ground,
dmp_abs,
dup_neg, dmp_neg,
dup_add, dmp_add,
dup_sub, dmp_sub,
dup_mul, dmp_mul,
dmp_sqr,
dup_pow, dmp_pow,
dmp_pdiv,
dmp_prem,
dmp_pquo,
dmp_pexquo,
dmp_div,
dup_rem, dmp_rem,
dmp_quo,
dmp_exquo,
dmp_add_mul, dmp_sub_mul,
dmp_max_norm,
dmp_l1_norm)
from sympy.polys.densetools import (
dmp_clear_denoms,
dmp_integrate_in,
dmp_diff_in,
dmp_eval_in,
dup_revert,
dmp_ground_trunc,
dmp_ground_content,
dmp_ground_primitive,
dmp_ground_monic,
dmp_compose,
dup_decompose,
dup_shift,
dup_transform,
dmp_lift)
from sympy.polys.euclidtools import (
dup_half_gcdex, dup_gcdex, dup_invert,
dmp_subresultants,
dmp_resultant,
dmp_discriminant,
dmp_inner_gcd,
dmp_gcd,
dmp_lcm,
dmp_cancel)
from sympy.polys.sqfreetools import (
dup_gff_list,
dmp_norm,
dmp_sqf_p,
dmp_sqf_norm,
dmp_sqf_part,
dmp_sqf_list, dmp_sqf_list_include)
from sympy.polys.factortools import (
dup_cyclotomic_p, dmp_irreducible_p,
dmp_factor_list, dmp_factor_list_include)
from sympy.polys.rootisolation import (
dup_isolate_real_roots_sqf,
dup_isolate_real_roots,
dup_isolate_all_roots_sqf,
dup_isolate_all_roots,
dup_refine_real_root,
dup_count_real_roots,
dup_count_complex_roots,
dup_sturm)
from sympy.polys.polyerrors import (
UnificationFailed,
PolynomialError)
def init_normal_DMP(rep, lev, dom):
return DMP(dmp_normal(rep, lev, dom), dom, lev)
[docs]class DMP(PicklableWithSlots, CantSympify):
"""Dense Multivariate Polynomials over `K`. """
__slots__ = ['rep', 'lev', 'dom', 'ring']
def __init__(self, rep, dom, lev=None, ring=None):
if lev is not None:
if type(rep) is dict:
rep = dmp_from_dict(rep, lev, dom)
elif type(rep) is not list:
rep = dmp_ground(dom.convert(rep), lev)
else:
rep, lev = dmp_validate(rep)
self.rep = rep
self.lev = lev
self.dom = dom
self.ring = ring
def __repr__(f):
return "%s(%s, %s, %s)" % (f.__class__.__name__, f.rep, f.dom, f.ring)
def __hash__(f):
return hash((f.__class__.__name__, f.to_tuple(), f.lev, f.dom, f.ring))
[docs] def unify(f, g):
"""Unify representations of two multivariate polynomials. """
if not isinstance(g, DMP) or f.lev != g.lev:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if f.dom == g.dom and f.ring == g.ring:
return f.lev, f.dom, f.per, f.rep, g.rep
else:
lev, dom = f.lev, f.dom.unify(g.dom)
ring = f.ring
if g.ring is not None:
if ring is not None:
ring = ring.unify(g.ring)
else:
ring = g.ring
F = dmp_convert(f.rep, lev, f.dom, dom)
G = dmp_convert(g.rep, lev, g.dom, dom)
def per(rep, dom=dom, lev=lev, kill=False):
if kill:
if not lev:
return rep
else:
lev -= 1
return DMP(rep, dom, lev, ring)
return lev, dom, per, F, G
[docs] def per(f, rep, dom=None, kill=False, ring=None):
"""Create a DMP out of the given representation. """
lev = f.lev
if kill:
if not lev:
return rep
else:
lev -= 1
if dom is None:
dom = f.dom
if ring is None:
ring = f.ring
return DMP(rep, dom, lev, ring)
@classmethod
def zero(cls, lev, dom, ring=None):
return DMP(0, dom, lev, ring)
@classmethod
def one(cls, lev, dom, ring=None):
return DMP(1, dom, lev, ring)
[docs] @classmethod
def from_list(cls, rep, lev, dom):
"""Create an instance of ``cls`` given a list of native coefficients. """
return cls(dmp_convert(rep, lev, None, dom), dom, lev)
[docs] @classmethod
def from_sympy_list(cls, rep, lev, dom):
"""Create an instance of ``cls`` given a list of SymPy coefficients. """
return cls(dmp_from_sympy(rep, lev, dom), dom, lev)
[docs] def to_dict(f, zero=False):
"""Convert ``f`` to a dict representation with native coefficients. """
return dmp_to_dict(f.rep, f.lev, f.dom, zero=zero)
[docs] def to_sympy_dict(f, zero=False):
"""Convert ``f`` to a dict representation with SymPy coefficients. """
rep = dmp_to_dict(f.rep, f.lev, f.dom, zero=zero)
for k, v in rep.items():
rep[k] = f.dom.to_sympy(v)
return rep
[docs] def to_list(f):
"""Convert ``f`` to a list representation with native coefficients. """
return f.rep
[docs] def to_sympy_list(f):
"""Convert ``f`` to a list representation with SymPy coefficients. """
def sympify_nested_list(rep):
out = []
for val in rep:
if isinstance(val, list):
out.append(sympify_nested_list(val))
else:
out.append(f.dom.to_sympy(val))
return out
return sympify_nested_list(f.rep)
[docs] def to_tuple(f):
"""
Convert ``f`` to a tuple representation with native coefficients.
This is needed for hashing.
"""
return dmp_to_tuple(f.rep, f.lev)
[docs] @classmethod
def from_dict(cls, rep, lev, dom):
"""Construct and instance of ``cls`` from a ``dict`` representation. """
return cls(dmp_from_dict(rep, lev, dom), dom, lev)
@classmethod
def from_monoms_coeffs(cls, monoms, coeffs, lev, dom, ring=None):
return DMP(dict(list(zip(monoms, coeffs))), dom, lev, ring)
[docs] def to_ring(f):
"""Make the ground domain a ring. """
return f.convert(f.dom.get_ring())
[docs] def to_field(f):
"""Make the ground domain a field. """
return f.convert(f.dom.get_field())
[docs] def to_exact(f):
"""Make the ground domain exact. """
return f.convert(f.dom.get_exact())
[docs] def convert(f, dom):
"""Convert the ground domain of ``f``. """
if f.dom == dom:
return f
else:
return DMP(dmp_convert(f.rep, f.lev, f.dom, dom), dom, f.lev)
[docs] def slice(f, m, n, j=0):
"""Take a continuous subsequence of terms of ``f``. """
return f.per(dmp_slice_in(f.rep, m, n, j, f.lev, f.dom))
[docs] def coeffs(f, order=None):
"""Returns all non-zero coefficients from ``f`` in lex order. """
return [ c for _, c in dmp_list_terms(f.rep, f.lev, f.dom, order=order) ]
[docs] def monoms(f, order=None):
"""Returns all non-zero monomials from ``f`` in lex order. """
return [ m for m, _ in dmp_list_terms(f.rep, f.lev, f.dom, order=order) ]
[docs] def terms(f, order=None):
"""Returns all non-zero terms from ``f`` in lex order. """
return dmp_list_terms(f.rep, f.lev, f.dom, order=order)
[docs] def all_coeffs(f):
"""Returns all coefficients from ``f``. """
if not f.lev:
if not f:
return [f.dom.zero]
else:
return [ c for c in f.rep ]
else:
raise PolynomialError('multivariate polynomials not supported')
[docs] def all_monoms(f):
"""Returns all monomials from ``f``. """
if not f.lev:
n = dup_degree(f.rep)
if n < 0:
return [(0,)]
else:
return [ (n - i,) for i, c in enumerate(f.rep) ]
else:
raise PolynomialError('multivariate polynomials not supported')
[docs] def all_terms(f):
"""Returns all terms from a ``f``. """
if not f.lev:
n = dup_degree(f.rep)
if n < 0:
return [((0,), f.dom.zero)]
else:
return [ ((n - i,), c) for i, c in enumerate(f.rep) ]
else:
raise PolynomialError('multivariate polynomials not supported')
[docs] def lift(f):
"""Convert algebraic coefficients to rationals. """
return f.per(dmp_lift(f.rep, f.lev, f.dom), dom=f.dom.dom)
[docs] def deflate(f):
"""Reduce degree of `f` by mapping `x_i^m` to `y_i`. """
J, F = dmp_deflate(f.rep, f.lev, f.dom)
return J, f.per(F)
[docs] def inject(f, front=False):
"""Inject ground domain generators into ``f``. """
F, lev = dmp_inject(f.rep, f.lev, f.dom, front=front)
return f.__class__(F, f.dom.dom, lev)
[docs] def eject(f, dom, front=False):
"""Eject selected generators into the ground domain. """
F = dmp_eject(f.rep, f.lev, dom, front=front)
return f.__class__(F, dom, f.lev - len(dom.symbols))
[docs] def exclude(f):
r"""
Remove useless generators from ``f``.
Returns the removed generators and the new excluded ``f``.
Examples
========
>>> from sympy.polys.polyclasses import DMP
>>> from sympy.polys.domains import ZZ
>>> DMP([[[ZZ(1)]], [[ZZ(1)], [ZZ(2)]]], ZZ).exclude()
([2], DMP([[1], [1, 2]], ZZ, None))
"""
J, F, u = dmp_exclude(f.rep, f.lev, f.dom)
return J, f.__class__(F, f.dom, u)
[docs] def permute(f, P):
r"""
Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`.
Examples
========
>>> from sympy.polys.polyclasses import DMP
>>> from sympy.polys.domains import ZZ
>>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 0, 2])
DMP([[[2], []], [[1, 0], []]], ZZ, None)
>>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 2, 0])
DMP([[[1], []], [[2, 0], []]], ZZ, None)
"""
return f.per(dmp_permute(f.rep, P, f.lev, f.dom))
[docs] def terms_gcd(f):
"""Remove GCD of terms from the polynomial ``f``. """
J, F = dmp_terms_gcd(f.rep, f.lev, f.dom)
return J, f.per(F)
[docs] def add_ground(f, c):
"""Add an element of the ground domain to ``f``. """
return f.per(dmp_add_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
[docs] def sub_ground(f, c):
"""Subtract an element of the ground domain from ``f``. """
return f.per(dmp_sub_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
[docs] def mul_ground(f, c):
"""Multiply ``f`` by a an element of the ground domain. """
return f.per(dmp_mul_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
[docs] def quo_ground(f, c):
"""Quotient of ``f`` by a an element of the ground domain. """
return f.per(dmp_quo_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
[docs] def exquo_ground(f, c):
"""Exact quotient of ``f`` by a an element of the ground domain. """
return f.per(dmp_exquo_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
[docs] def abs(f):
"""Make all coefficients in ``f`` positive. """
return f.per(dmp_abs(f.rep, f.lev, f.dom))
[docs] def neg(f):
"""Negate all coefficients in ``f``. """
return f.per(dmp_neg(f.rep, f.lev, f.dom))
[docs] def add(f, g):
"""Add two multivariate polynomials ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_add(F, G, lev, dom))
[docs] def sub(f, g):
"""Subtract two multivariate polynomials ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_sub(F, G, lev, dom))
[docs] def mul(f, g):
"""Multiply two multivariate polynomials ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_mul(F, G, lev, dom))
[docs] def sqr(f):
"""Square a multivariate polynomial ``f``. """
return f.per(dmp_sqr(f.rep, f.lev, f.dom))
[docs] def pow(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
if isinstance(n, int):
return f.per(dmp_pow(f.rep, n, f.lev, f.dom))
else:
raise TypeError("``int`` expected, got %s" % type(n))
[docs] def pdiv(f, g):
"""Polynomial pseudo-division of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
q, r = dmp_pdiv(F, G, lev, dom)
return per(q), per(r)
[docs] def prem(f, g):
"""Polynomial pseudo-remainder of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_prem(F, G, lev, dom))
[docs] def pquo(f, g):
"""Polynomial pseudo-quotient of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_pquo(F, G, lev, dom))
[docs] def pexquo(f, g):
"""Polynomial exact pseudo-quotient of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_pexquo(F, G, lev, dom))
[docs] def div(f, g):
"""Polynomial division with remainder of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
q, r = dmp_div(F, G, lev, dom)
return per(q), per(r)
[docs] def rem(f, g):
"""Computes polynomial remainder of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_rem(F, G, lev, dom))
[docs] def quo(f, g):
"""Computes polynomial quotient of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_quo(F, G, lev, dom))
[docs] def exquo(f, g):
"""Computes polynomial exact quotient of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
res = per(dmp_exquo(F, G, lev, dom))
if f.ring and res not in f.ring:
from sympy.polys.polyerrors import ExactQuotientFailed
raise ExactQuotientFailed(f, g, f.ring)
return res
[docs] def degree(f, j=0):
"""Returns the leading degree of ``f`` in ``x_j``. """
if isinstance(j, int):
return dmp_degree_in(f.rep, j, f.lev)
else:
raise TypeError("``int`` expected, got %s" % type(j))
[docs] def degree_list(f):
"""Returns a list of degrees of ``f``. """
return dmp_degree_list(f.rep, f.lev)
[docs] def total_degree(f):
"""Returns the total degree of ``f``. """
return max(sum(m) for m in f.monoms())
[docs] def homogenize(f, s):
"""Return homogeneous polynomial of ``f``"""
td = f.total_degree()
result = {}
new_symbol = (s == len(f.terms()[0][0]))
for term in f.terms():
d = sum(term[0])
if d < td:
i = td - d
else:
i = 0
if new_symbol:
result[term[0] + (i,)] = term[1]
else:
l = list(term[0])
l[s] += i
result[tuple(l)] = term[1]
return DMP(result, f.dom, f.lev + int(new_symbol), f.ring)
[docs] def homogeneous_order(f):
"""Returns the homogeneous order of ``f``. """
if f.is_zero:
return -oo
monoms = f.monoms()
tdeg = sum(monoms[0])
for monom in monoms:
_tdeg = sum(monom)
if _tdeg != tdeg:
return None
return tdeg
[docs] def LC(f):
"""Returns the leading coefficient of ``f``. """
return dmp_ground_LC(f.rep, f.lev, f.dom)
[docs] def TC(f):
"""Returns the trailing coefficient of ``f``. """
return dmp_ground_TC(f.rep, f.lev, f.dom)
[docs] def nth(f, *N):
"""Returns the ``n``-th coefficient of ``f``. """
if all(isinstance(n, int) for n in N):
return dmp_ground_nth(f.rep, N, f.lev, f.dom)
else:
raise TypeError("a sequence of integers expected")
[docs] def max_norm(f):
"""Returns maximum norm of ``f``. """
return dmp_max_norm(f.rep, f.lev, f.dom)
[docs] def l1_norm(f):
"""Returns l1 norm of ``f``. """
return dmp_l1_norm(f.rep, f.lev, f.dom)
[docs] def clear_denoms(f):
"""Clear denominators, but keep the ground domain. """
coeff, F = dmp_clear_denoms(f.rep, f.lev, f.dom)
return coeff, f.per(F)
[docs] def integrate(f, m=1, j=0):
"""Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """
if not isinstance(m, int):
raise TypeError("``int`` expected, got %s" % type(m))
if not isinstance(j, int):
raise TypeError("``int`` expected, got %s" % type(j))
return f.per(dmp_integrate_in(f.rep, m, j, f.lev, f.dom))
[docs] def diff(f, m=1, j=0):
"""Computes the ``m``-th order derivative of ``f`` in ``x_j``. """
if not isinstance(m, int):
raise TypeError("``int`` expected, got %s" % type(m))
if not isinstance(j, int):
raise TypeError("``int`` expected, got %s" % type(j))
return f.per(dmp_diff_in(f.rep, m, j, f.lev, f.dom))
[docs] def eval(f, a, j=0):
"""Evaluates ``f`` at the given point ``a`` in ``x_j``. """
if not isinstance(j, int):
raise TypeError("``int`` expected, got %s" % type(j))
return f.per(dmp_eval_in(f.rep,
f.dom.convert(a), j, f.lev, f.dom), kill=True)
[docs] def half_gcdex(f, g):
"""Half extended Euclidean algorithm, if univariate. """
lev, dom, per, F, G = f.unify(g)
if not lev:
s, h = dup_half_gcdex(F, G, dom)
return per(s), per(h)
else:
raise ValueError('univariate polynomial expected')
[docs] def gcdex(f, g):
"""Extended Euclidean algorithm, if univariate. """
lev, dom, per, F, G = f.unify(g)
if not lev:
s, t, h = dup_gcdex(F, G, dom)
return per(s), per(t), per(h)
else:
raise ValueError('univariate polynomial expected')
[docs] def invert(f, g):
"""Invert ``f`` modulo ``g``, if possible. """
lev, dom, per, F, G = f.unify(g)
if not lev:
return per(dup_invert(F, G, dom))
else:
raise ValueError('univariate polynomial expected')
[docs] def revert(f, n):
"""Compute ``f**(-1)`` mod ``x**n``. """
if not f.lev:
return f.per(dup_revert(f.rep, n, f.dom))
else:
raise ValueError('univariate polynomial expected')
[docs] def subresultants(f, g):
"""Computes subresultant PRS sequence of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
R = dmp_subresultants(F, G, lev, dom)
return list(map(per, R))
[docs] def resultant(f, g, includePRS=False):
"""Computes resultant of ``f`` and ``g`` via PRS. """
lev, dom, per, F, G = f.unify(g)
if includePRS:
res, R = dmp_resultant(F, G, lev, dom, includePRS=includePRS)
return per(res, kill=True), list(map(per, R))
return per(dmp_resultant(F, G, lev, dom), kill=True)
[docs] def discriminant(f):
"""Computes discriminant of ``f``. """
return f.per(dmp_discriminant(f.rep, f.lev, f.dom), kill=True)
[docs] def cofactors(f, g):
"""Returns GCD of ``f`` and ``g`` and their cofactors. """
lev, dom, per, F, G = f.unify(g)
h, cff, cfg = dmp_inner_gcd(F, G, lev, dom)
return per(h), per(cff), per(cfg)
[docs] def gcd(f, g):
"""Returns polynomial GCD of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_gcd(F, G, lev, dom))
[docs] def lcm(f, g):
"""Returns polynomial LCM of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_lcm(F, G, lev, dom))
[docs] def cancel(f, g, include=True):
"""Cancel common factors in a rational function ``f/g``. """
lev, dom, per, F, G = f.unify(g)
if include:
F, G = dmp_cancel(F, G, lev, dom, include=True)
else:
cF, cG, F, G = dmp_cancel(F, G, lev, dom, include=False)
F, G = per(F), per(G)
if include:
return F, G
else:
return cF, cG, F, G
[docs] def trunc(f, p):
"""Reduce ``f`` modulo a constant ``p``. """
return f.per(dmp_ground_trunc(f.rep, f.dom.convert(p), f.lev, f.dom))
[docs] def monic(f):
"""Divides all coefficients by ``LC(f)``. """
return f.per(dmp_ground_monic(f.rep, f.lev, f.dom))
[docs] def content(f):
"""Returns GCD of polynomial coefficients. """
return dmp_ground_content(f.rep, f.lev, f.dom)
[docs] def primitive(f):
"""Returns content and a primitive form of ``f``. """
cont, F = dmp_ground_primitive(f.rep, f.lev, f.dom)
return cont, f.per(F)
[docs] def compose(f, g):
"""Computes functional composition of ``f`` and ``g``. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_compose(F, G, lev, dom))
[docs] def decompose(f):
"""Computes functional decomposition of ``f``. """
if not f.lev:
return list(map(f.per, dup_decompose(f.rep, f.dom)))
else:
raise ValueError('univariate polynomial expected')
[docs] def shift(f, a):
"""Efficiently compute Taylor shift ``f(x + a)``. """
if not f.lev:
return f.per(dup_shift(f.rep, f.dom.convert(a), f.dom))
else:
raise ValueError('univariate polynomial expected')
[docs] def sturm(f):
"""Computes the Sturm sequence of ``f``. """
if not f.lev:
return list(map(f.per, dup_sturm(f.rep, f.dom)))
else:
raise ValueError('univariate polynomial expected')
[docs] def gff_list(f):
"""Computes greatest factorial factorization of ``f``. """
if not f.lev:
return [ (f.per(g), k) for g, k in dup_gff_list(f.rep, f.dom) ]
else:
raise ValueError('univariate polynomial expected')
[docs] def norm(f):
"""Computes ``Norm(f)``."""
r = dmp_norm(f.rep, f.lev, f.dom)
return f.per(r, dom=f.dom.dom)
[docs] def sqf_norm(f):
"""Computes square-free norm of ``f``. """
s, g, r = dmp_sqf_norm(f.rep, f.lev, f.dom)
return s, f.per(g), f.per(r, dom=f.dom.dom)
[docs] def sqf_part(f):
"""Computes square-free part of ``f``. """
return f.per(dmp_sqf_part(f.rep, f.lev, f.dom))
[docs] def sqf_list(f, all=False):
"""Returns a list of square-free factors of ``f``. """
coeff, factors = dmp_sqf_list(f.rep, f.lev, f.dom, all)
return coeff, [ (f.per(g), k) for g, k in factors ]
[docs] def sqf_list_include(f, all=False):
"""Returns a list of square-free factors of ``f``. """
factors = dmp_sqf_list_include(f.rep, f.lev, f.dom, all)
return [ (f.per(g), k) for g, k in factors ]
[docs] def factor_list(f):
"""Returns a list of irreducible factors of ``f``. """
coeff, factors = dmp_factor_list(f.rep, f.lev, f.dom)
return coeff, [ (f.per(g), k) for g, k in factors ]
[docs] def factor_list_include(f):
"""Returns a list of irreducible factors of ``f``. """
factors = dmp_factor_list_include(f.rep, f.lev, f.dom)
return [ (f.per(g), k) for g, k in factors ]
[docs] def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False):
"""Compute isolating intervals for roots of ``f``. """
if not f.lev:
if not all:
if not sqf:
return dup_isolate_real_roots(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
else:
return dup_isolate_real_roots_sqf(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
else:
if not sqf:
return dup_isolate_all_roots(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
else:
return dup_isolate_all_roots_sqf(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
else:
raise PolynomialError(
"can't isolate roots of a multivariate polynomial")
[docs] def refine_root(f, s, t, eps=None, steps=None, fast=False):
"""
Refine an isolating interval to the given precision.
``eps`` should be a rational number.
"""
if not f.lev:
return dup_refine_real_root(f.rep, s, t, f.dom, eps=eps, steps=steps, fast=fast)
else:
raise PolynomialError(
"can't refine a root of a multivariate polynomial")
[docs] def count_real_roots(f, inf=None, sup=None):
"""Return the number of real roots of ``f`` in ``[inf, sup]``. """
return dup_count_real_roots(f.rep, f.dom, inf=inf, sup=sup)
[docs] def count_complex_roots(f, inf=None, sup=None):
"""Return the number of complex roots of ``f`` in ``[inf, sup]``. """
return dup_count_complex_roots(f.rep, f.dom, inf=inf, sup=sup)
@property
def is_zero(f):
"""Returns ``True`` if ``f`` is a zero polynomial. """
return dmp_zero_p(f.rep, f.lev)
@property
def is_one(f):
"""Returns ``True`` if ``f`` is a unit polynomial. """
return dmp_one_p(f.rep, f.lev, f.dom)
@property
def is_ground(f):
"""Returns ``True`` if ``f`` is an element of the ground domain. """
return dmp_ground_p(f.rep, None, f.lev)
@property
def is_sqf(f):
"""Returns ``True`` if ``f`` is a square-free polynomial. """
return dmp_sqf_p(f.rep, f.lev, f.dom)
@property
def is_monic(f):
"""Returns ``True`` if the leading coefficient of ``f`` is one. """
return f.dom.is_one(dmp_ground_LC(f.rep, f.lev, f.dom))
@property
def is_primitive(f):
"""Returns ``True`` if the GCD of the coefficients of ``f`` is one. """
return f.dom.is_one(dmp_ground_content(f.rep, f.lev, f.dom))
@property
def is_linear(f):
"""Returns ``True`` if ``f`` is linear in all its variables. """
return all(sum(monom) <= 1 for monom in dmp_to_dict(f.rep, f.lev, f.dom).keys())
@property
def is_quadratic(f):
"""Returns ``True`` if ``f`` is quadratic in all its variables. """
return all(sum(monom) <= 2 for monom in dmp_to_dict(f.rep, f.lev, f.dom).keys())
@property
def is_monomial(f):
"""Returns ``True`` if ``f`` is zero or has only one term. """
return len(f.to_dict()) <= 1
@property
def is_homogeneous(f):
"""Returns ``True`` if ``f`` is a homogeneous polynomial. """
return f.homogeneous_order() is not None
@property
def is_irreducible(f):
"""Returns ``True`` if ``f`` has no factors over its domain. """
return dmp_irreducible_p(f.rep, f.lev, f.dom)
@property
def is_cyclotomic(f):
"""Returns ``True`` if ``f`` is a cyclotomic polynomial. """
if not f.lev:
return dup_cyclotomic_p(f.rep, f.dom)
else:
return False
def __abs__(f):
return f.abs()
def __neg__(f):
return f.neg()
def __add__(f, g):
if not isinstance(g, DMP):
try:
g = f.per(dmp_ground(f.dom.convert(g), f.lev))
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
g = f.ring.convert(g)
except (CoercionFailed, NotImplementedError):
return NotImplemented
return f.add(g)
def __radd__(f, g):
return f.__add__(g)
def __sub__(f, g):
if not isinstance(g, DMP):
try:
g = f.per(dmp_ground(f.dom.convert(g), f.lev))
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
g = f.ring.convert(g)
except (CoercionFailed, NotImplementedError):
return NotImplemented
return f.sub(g)
def __rsub__(f, g):
return (-f).__add__(g)
def __mul__(f, g):
if isinstance(g, DMP):
return f.mul(g)
else:
try:
return f.mul_ground(g)
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
return f.mul(f.ring.convert(g))
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __div__(f, g):
if isinstance(g, DMP):
return f.exquo(g)
else:
try:
return f.mul_ground(g)
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
return f.exquo(f.ring.convert(g))
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __rdiv__(f, g):
if isinstance(g, DMP):
return g.exquo(f)
elif f.ring is not None:
try:
return f.ring.convert(g).exquo(f)
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
__truediv__ = __div__
__rtruediv__ = __rdiv__
def __rmul__(f, g):
return f.__mul__(g)
def __pow__(f, n):
return f.pow(n)
def __divmod__(f, g):
return f.div(g)
def __mod__(f, g):
return f.rem(g)
def __floordiv__(f, g):
if isinstance(g, DMP):
return f.quo(g)
else:
try:
return f.quo_ground(g)
except TypeError:
return NotImplemented
def __eq__(f, g):
try:
_, _, _, F, G = f.unify(g)
if f.lev == g.lev:
return F == G
except UnificationFailed:
pass
return False
def __ne__(f, g):
return not f == g
def eq(f, g, strict=False):
if not strict:
return f == g
else:
return f._strict_eq(g)
def ne(f, g, strict=False):
return not f.eq(g, strict=strict)
def _strict_eq(f, g):
return isinstance(g, f.__class__) and f.lev == g.lev \
and f.dom == g.dom \
and f.rep == g.rep
def __lt__(f, g):
_, _, _, F, G = f.unify(g)
return F < G
def __le__(f, g):
_, _, _, F, G = f.unify(g)
return F <= G
def __gt__(f, g):
_, _, _, F, G = f.unify(g)
return F > G
def __ge__(f, g):
_, _, _, F, G = f.unify(g)
return F >= G
def __nonzero__(f):
return not dmp_zero_p(f.rep, f.lev)
__bool__ = __nonzero__
def init_normal_DMF(num, den, lev, dom):
return DMF(dmp_normal(num, lev, dom),
dmp_normal(den, lev, dom), dom, lev)
[docs]class DMF(PicklableWithSlots, CantSympify):
"""Dense Multivariate Fractions over `K`. """
__slots__ = ['num', 'den', 'lev', 'dom', 'ring']
def __init__(self, rep, dom, lev=None, ring=None):
num, den, lev = self._parse(rep, dom, lev)
num, den = dmp_cancel(num, den, lev, dom)
self.num = num
self.den = den
self.lev = lev
self.dom = dom
self.ring = ring
@classmethod
def new(cls, rep, dom, lev=None, ring=None):
num, den, lev = cls._parse(rep, dom, lev)
obj = object.__new__(cls)
obj.num = num
obj.den = den
obj.lev = lev
obj.dom = dom
obj.ring = ring
return obj
@classmethod
def _parse(cls, rep, dom, lev=None):
if type(rep) is tuple:
num, den = rep
if lev is not None:
if type(num) is dict:
num = dmp_from_dict(num, lev, dom)
if type(den) is dict:
den = dmp_from_dict(den, lev, dom)
else:
num, num_lev = dmp_validate(num)
den, den_lev = dmp_validate(den)
if num_lev == den_lev:
lev = num_lev
else:
raise ValueError('inconsistent number of levels')
if dmp_zero_p(den, lev):
raise ZeroDivisionError('fraction denominator')
if dmp_zero_p(num, lev):
den = dmp_one(lev, dom)
else:
if dmp_negative_p(den, lev, dom):
num = dmp_neg(num, lev, dom)
den = dmp_neg(den, lev, dom)
else:
num = rep
if lev is not None:
if type(num) is dict:
num = dmp_from_dict(num, lev, dom)
elif type(num) is not list:
num = dmp_ground(dom.convert(num), lev)
else:
num, lev = dmp_validate(num)
den = dmp_one(lev, dom)
return num, den, lev
def __repr__(f):
return "%s((%s, %s), %s, %s)" % (f.__class__.__name__, f.num, f.den,
f.dom, f.ring)
def __hash__(f):
return hash((f.__class__.__name__, dmp_to_tuple(f.num, f.lev),
dmp_to_tuple(f.den, f.lev), f.lev, f.dom, f.ring))
[docs] def poly_unify(f, g):
"""Unify a multivariate fraction and a polynomial. """
if not isinstance(g, DMP) or f.lev != g.lev:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if f.dom == g.dom and f.ring == g.ring:
return (f.lev, f.dom, f.per, (f.num, f.den), g.rep)
else:
lev, dom = f.lev, f.dom.unify(g.dom)
ring = f.ring
if g.ring is not None:
if ring is not None:
ring = ring.unify(g.ring)
else:
ring = g.ring
F = (dmp_convert(f.num, lev, f.dom, dom),
dmp_convert(f.den, lev, f.dom, dom))
G = dmp_convert(g.rep, lev, g.dom, dom)
def per(num, den, cancel=True, kill=False, lev=lev):
if kill:
if not lev:
return num/den
else:
lev = lev - 1
if cancel:
num, den = dmp_cancel(num, den, lev, dom)
return f.__class__.new((num, den), dom, lev, ring=ring)
return lev, dom, per, F, G
[docs] def frac_unify(f, g):
"""Unify representations of two multivariate fractions. """
if not isinstance(g, DMF) or f.lev != g.lev:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if f.dom == g.dom and f.ring == g.ring:
return (f.lev, f.dom, f.per, (f.num, f.den),
(g.num, g.den))
else:
lev, dom = f.lev, f.dom.unify(g.dom)
ring = f.ring
if g.ring is not None:
if ring is not None:
ring = ring.unify(g.ring)
else:
ring = g.ring
F = (dmp_convert(f.num, lev, f.dom, dom),
dmp_convert(f.den, lev, f.dom, dom))
G = (dmp_convert(g.num, lev, g.dom, dom),
dmp_convert(g.den, lev, g.dom, dom))
def per(num, den, cancel=True, kill=False, lev=lev):
if kill:
if not lev:
return num/den
else:
lev = lev - 1
if cancel:
num, den = dmp_cancel(num, den, lev, dom)
return f.__class__.new((num, den), dom, lev, ring=ring)
return lev, dom, per, F, G
[docs] def per(f, num, den, cancel=True, kill=False, ring=None):
"""Create a DMF out of the given representation. """
lev, dom = f.lev, f.dom
if kill:
if not lev:
return num/den
else:
lev -= 1
if cancel:
num, den = dmp_cancel(num, den, lev, dom)
if ring is None:
ring = f.ring
return f.__class__.new((num, den), dom, lev, ring=ring)
[docs] def half_per(f, rep, kill=False):
"""Create a DMP out of the given representation. """
lev = f.lev
if kill:
if not lev:
return rep
else:
lev -= 1
return DMP(rep, f.dom, lev)
@classmethod
def zero(cls, lev, dom, ring=None):
return cls.new(0, dom, lev, ring=ring)
@classmethod
def one(cls, lev, dom, ring=None):
return cls.new(1, dom, lev, ring=ring)
[docs] def numer(f):
"""Returns the numerator of ``f``. """
return f.half_per(f.num)
[docs] def denom(f):
"""Returns the denominator of ``f``. """
return f.half_per(f.den)
[docs] def cancel(f):
"""Remove common factors from ``f.num`` and ``f.den``. """
return f.per(f.num, f.den)
[docs] def neg(f):
"""Negate all coefficients in ``f``. """
return f.per(dmp_neg(f.num, f.lev, f.dom), f.den, cancel=False)
[docs] def add(f, g):
"""Add two multivariate fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = dmp_add_mul(F_num, F_den, G, lev, dom), F_den
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_add(dmp_mul(F_num, G_den, lev, dom),
dmp_mul(F_den, G_num, lev, dom), lev, dom)
den = dmp_mul(F_den, G_den, lev, dom)
return per(num, den)
[docs] def sub(f, g):
"""Subtract two multivariate fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = dmp_sub_mul(F_num, F_den, G, lev, dom), F_den
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_sub(dmp_mul(F_num, G_den, lev, dom),
dmp_mul(F_den, G_num, lev, dom), lev, dom)
den = dmp_mul(F_den, G_den, lev, dom)
return per(num, den)
[docs] def mul(f, g):
"""Multiply two multivariate fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = dmp_mul(F_num, G, lev, dom), F_den
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_mul(F_num, G_num, lev, dom)
den = dmp_mul(F_den, G_den, lev, dom)
return per(num, den)
[docs] def pow(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
if isinstance(n, int):
return f.per(dmp_pow(f.num, n, f.lev, f.dom),
dmp_pow(f.den, n, f.lev, f.dom), cancel=False)
else:
raise TypeError("``int`` expected, got %s" % type(n))
[docs] def quo(f, g):
"""Computes quotient of fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = F_num, dmp_mul(F_den, G, lev, dom)
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_mul(F_num, G_den, lev, dom)
den = dmp_mul(F_den, G_num, lev, dom)
res = per(num, den)
if f.ring is not None and res not in f.ring:
from sympy.polys.polyerrors import ExactQuotientFailed
raise ExactQuotientFailed(f, g, f.ring)
return res
exquo = quo
[docs] def invert(f, check=True):
"""Computes inverse of a fraction ``f``. """
if check and f.ring is not None and not f.ring.is_unit(f):
raise NotReversible(f, f.ring)
res = f.per(f.den, f.num, cancel=False)
return res
@property
def is_zero(f):
"""Returns ``True`` if ``f`` is a zero fraction. """
return dmp_zero_p(f.num, f.lev)
@property
def is_one(f):
"""Returns ``True`` if ``f`` is a unit fraction. """
return dmp_one_p(f.num, f.lev, f.dom) and \
dmp_one_p(f.den, f.lev, f.dom)
def __neg__(f):
return f.neg()
def __add__(f, g):
if isinstance(g, (DMP, DMF)):
return f.add(g)
try:
return f.add(f.half_per(g))
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
return f.add(f.ring.convert(g))
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __radd__(f, g):
return f.__add__(g)
def __sub__(f, g):
if isinstance(g, (DMP, DMF)):
return f.sub(g)
try:
return f.sub(f.half_per(g))
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
return f.sub(f.ring.convert(g))
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __rsub__(f, g):
return (-f).__add__(g)
def __mul__(f, g):
if isinstance(g, (DMP, DMF)):
return f.mul(g)
try:
return f.mul(f.half_per(g))
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
return f.mul(f.ring.convert(g))
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __rmul__(f, g):
return f.__mul__(g)
def __pow__(f, n):
return f.pow(n)
def __div__(f, g):
if isinstance(g, (DMP, DMF)):
return f.quo(g)
try:
return f.quo(f.half_per(g))
except TypeError:
return NotImplemented
except (CoercionFailed, NotImplementedError):
if f.ring is not None:
try:
return f.quo(f.ring.convert(g))
except (CoercionFailed, NotImplementedError):
pass
return NotImplemented
def __rdiv__(self, g):
r = self.invert(check=False)*g
if self.ring and r not in self.ring:
from sympy.polys.polyerrors import ExactQuotientFailed
raise ExactQuotientFailed(g, self, self.ring)
return r
__truediv__ = __div__
__rtruediv__ = __rdiv__
def __eq__(f, g):
try:
if isinstance(g, DMP):
_, _, _, (F_num, F_den), G = f.poly_unify(g)
if f.lev == g.lev:
return dmp_one_p(F_den, f.lev, f.dom) and F_num == G
else:
_, _, _, F, G = f.frac_unify(g)
if f.lev == g.lev:
return F == G
except UnificationFailed:
pass
return False
def __ne__(f, g):
try:
if isinstance(g, DMP):
_, _, _, (F_num, F_den), G = f.poly_unify(g)
if f.lev == g.lev:
return not (dmp_one_p(F_den, f.lev, f.dom) and F_num == G)
else:
_, _, _, F, G = f.frac_unify(g)
if f.lev == g.lev:
return F != G
except UnificationFailed:
pass
return True
def __lt__(f, g):
_, _, _, F, G = f.frac_unify(g)
return F < G
def __le__(f, g):
_, _, _, F, G = f.frac_unify(g)
return F <= G
def __gt__(f, g):
_, _, _, F, G = f.frac_unify(g)
return F > G
def __ge__(f, g):
_, _, _, F, G = f.frac_unify(g)
return F >= G
def __nonzero__(f):
return not dmp_zero_p(f.num, f.lev)
__bool__ = __nonzero__
def init_normal_ANP(rep, mod, dom):
return ANP(dup_normal(rep, dom),
dup_normal(mod, dom), dom)
[docs]class ANP(PicklableWithSlots, CantSympify):
"""Dense Algebraic Number Polynomials over a field. """
__slots__ = ['rep', 'mod', 'dom']
def __init__(self, rep, mod, dom):
if type(rep) is dict:
self.rep = dup_from_dict(rep, dom)
else:
if type(rep) is not list:
rep = [dom.convert(rep)]
self.rep = dup_strip(rep)
if isinstance(mod, DMP):
self.mod = mod.rep
else:
if type(mod) is dict:
self.mod = dup_from_dict(mod, dom)
else:
self.mod = dup_strip(mod)
self.dom = dom
def __repr__(f):
return "%s(%s, %s, %s)" % (f.__class__.__name__, f.rep, f.mod, f.dom)
def __hash__(f):
return hash((f.__class__.__name__, f.to_tuple(), dmp_to_tuple(f.mod, 0), f.dom))
[docs] def unify(f, g):
"""Unify representations of two algebraic numbers. """
if not isinstance(g, ANP) or f.mod != g.mod:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if f.dom == g.dom:
return f.dom, f.per, f.rep, g.rep, f.mod
else:
dom = f.dom.unify(g.dom)
F = dup_convert(f.rep, f.dom, dom)
G = dup_convert(g.rep, g.dom, dom)
if dom != f.dom and dom != g.dom:
mod = dup_convert(f.mod, f.dom, dom)
else:
if dom == f.dom:
mod = f.mod
else:
mod = g.mod
per = lambda rep: ANP(rep, mod, dom)
return dom, per, F, G, mod
def per(f, rep, mod=None, dom=None):
return ANP(rep, mod or f.mod, dom or f.dom)
@classmethod
def zero(cls, mod, dom):
return ANP(0, mod, dom)
@classmethod
def one(cls, mod, dom):
return ANP(1, mod, dom)
[docs] def to_dict(f):
"""Convert ``f`` to a dict representation with native coefficients. """
return dmp_to_dict(f.rep, 0, f.dom)
[docs] def to_sympy_dict(f):
"""Convert ``f`` to a dict representation with SymPy coefficients. """
rep = dmp_to_dict(f.rep, 0, f.dom)
for k, v in rep.items():
rep[k] = f.dom.to_sympy(v)
return rep
[docs] def to_list(f):
"""Convert ``f`` to a list representation with native coefficients. """
return f.rep
[docs] def to_sympy_list(f):
"""Convert ``f`` to a list representation with SymPy coefficients. """
return [ f.dom.to_sympy(c) for c in f.rep ]
[docs] def to_tuple(f):
"""
Convert ``f`` to a tuple representation with native coefficients.
This is needed for hashing.
"""
return dmp_to_tuple(f.rep, 0)
@classmethod
def from_list(cls, rep, mod, dom):
return ANP(dup_strip(list(map(dom.convert, rep))), mod, dom)
def neg(f):
return f.per(dup_neg(f.rep, f.dom))
def add(f, g):
dom, per, F, G, mod = f.unify(g)
return per(dup_add(F, G, dom))
def sub(f, g):
dom, per, F, G, mod = f.unify(g)
return per(dup_sub(F, G, dom))
def mul(f, g):
dom, per, F, G, mod = f.unify(g)
return per(dup_rem(dup_mul(F, G, dom), mod, dom))
[docs] def pow(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
if isinstance(n, int):
if n < 0:
F, n = dup_invert(f.rep, f.mod, f.dom), -n
else:
F = f.rep
return f.per(dup_rem(dup_pow(F, n, f.dom), f.mod, f.dom))
else:
raise TypeError("``int`` expected, got %s" % type(n))
def div(f, g):
dom, per, F, G, mod = f.unify(g)
return (per(dup_rem(dup_mul(F, dup_invert(G, mod, dom), dom), mod, dom)), f.zero(mod, dom))
def rem(f, g):
dom, _, _, G, mod = f.unify(g)
s, h = dup_half_gcdex(G, mod, dom)
if h == [dom.one]:
return f.zero(mod, dom)
else:
raise NotInvertible("zero divisor")
def quo(f, g):
dom, per, F, G, mod = f.unify(g)
return per(dup_rem(dup_mul(F, dup_invert(G, mod, dom), dom), mod, dom))
exquo = quo
[docs] def LC(f):
"""Returns the leading coefficient of ``f``. """
return dup_LC(f.rep, f.dom)
[docs] def TC(f):
"""Returns the trailing coefficient of ``f``. """
return dup_TC(f.rep, f.dom)
@property
def is_zero(f):
"""Returns ``True`` if ``f`` is a zero algebraic number. """
return not f
@property
def is_one(f):
"""Returns ``True`` if ``f`` is a unit algebraic number. """
return f.rep == [f.dom.one]
@property
def is_ground(f):
"""Returns ``True`` if ``f`` is an element of the ground domain. """
return not f.rep or len(f.rep) == 1
def __neg__(f):
return f.neg()
def __add__(f, g):
if isinstance(g, ANP):
return f.add(g)
else:
try:
return f.add(f.per(g))
except (CoercionFailed, TypeError):
return NotImplemented
def __radd__(f, g):
return f.__add__(g)
def __sub__(f, g):
if isinstance(g, ANP):
return f.sub(g)
else:
try:
return f.sub(f.per(g))
except (CoercionFailed, TypeError):
return NotImplemented
def __rsub__(f, g):
return (-f).__add__(g)
def __mul__(f, g):
if isinstance(g, ANP):
return f.mul(g)
else:
try:
return f.mul(f.per(g))
except (CoercionFailed, TypeError):
return NotImplemented
def __rmul__(f, g):
return f.__mul__(g)
def __pow__(f, n):
return f.pow(n)
def __divmod__(f, g):
return f.div(g)
def __mod__(f, g):
return f.rem(g)
def __div__(f, g):
if isinstance(g, ANP):
return f.quo(g)
else:
try:
return f.quo(f.per(g))
except (CoercionFailed, TypeError):
return NotImplemented
__truediv__ = __div__
def __eq__(f, g):
try:
_, _, F, G, _ = f.unify(g)
return F == G
except UnificationFailed:
return False
def __ne__(f, g):
try:
_, _, F, G, _ = f.unify(g)
return F != G
except UnificationFailed:
return True
def __lt__(f, g):
_, _, F, G, _ = f.unify(g)
return F < G
def __le__(f, g):
_, _, F, G, _ = f.unify(g)
return F <= G
def __gt__(f, g):
_, _, F, G, _ = f.unify(g)
return F > G
def __ge__(f, g):
_, _, F, G, _ = f.unify(g)
return F >= G
def __nonzero__(f):
return bool(f.rep)
__bool__ = __nonzero__