Source code for sympy.printing.mathematica

"""
Mathematica code printer
"""

from __future__ import print_function, division
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence
from sympy.printing.str import StrPrinter

# Used in MCodePrinter._print_Function(self)
known_functions = {
    "exp": [(lambda x: True, "Exp")],
    "log": [(lambda x: True, "Log")],
    "sin": [(lambda x: True, "Sin")],
    "cos": [(lambda x: True, "Cos")],
    "tan": [(lambda x: True, "Tan")],
    "cot": [(lambda x: True, "Cot")],
    "asin": [(lambda x: True, "ArcSin")],
    "acos": [(lambda x: True, "ArcCos")],
    "atan": [(lambda x: True, "ArcTan")],
    "sinh": [(lambda x: True, "Sinh")],
    "cosh": [(lambda x: True, "Cosh")],
    "tanh": [(lambda x: True, "Tanh")],
    "coth": [(lambda x: True, "Coth")],
    "sech": [(lambda x: True, "Sech")],
    "csch": [(lambda x: True, "Csch")],
    "asinh": [(lambda x: True, "ArcSinh")],
    "acosh": [(lambda x: True, "ArcCosh")],
    "atanh": [(lambda x: True, "ArcTanh")],
    "acoth": [(lambda x: True, "ArcCoth")],
    "asech": [(lambda x: True, "ArcSech")],
    "acsch": [(lambda x: True, "ArcCsch")],
    "conjugate": [(lambda x: True, "Conjugate")],
    "Max": [(lambda *x: True, "Max")],
    "Min": [(lambda *x: True, "Min")],
}


[docs]class MCodePrinter(CodePrinter): """A printer to convert python expressions to strings of the Wolfram's Mathematica code """ printmethod = "_mcode" language = "Wolfram Language" _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 15, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, } _number_symbols = set() _not_supported = set() def __init__(self, settings={}): """Register function mappings supplied by user""" CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}).copy() for k, v in userfuncs.items(): if not isinstance(v, list): userfuncs[k] = [(lambda *x: True, v)] self.known_functions.update(userfuncs) def _format_code(self, lines): return lines def _print_Pow(self, expr): PREC = precedence(expr) return '%s^%s' % (self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC)) def _print_Mul(self, expr): PREC = precedence(expr) c, nc = expr.args_cnc() res = super(MCodePrinter, self)._print_Mul(expr.func(*c)) if nc: res += '*' res += '**'.join(self.parenthesize(a, PREC) for a in nc) return res # Primitive numbers def _print_Zero(self, expr): return '0' def _print_One(self, expr): return '1' def _print_NegativeOne(self, expr): return '-1' def _print_half(self, expr): return '1/2' def _print_ImaginaryUnit(self, expr): return 'I' # Infinity and invalid numbers def _print_Infinity(self, expr): return 'Infinity' def _print_NegativeInfinity(self, expr): return '-Infinity' def _print_ComplexInfinity(self, expr): return 'ComplexInfinity' def _print_NaN(self, expr): return 'Indeterminate' # Mathematical constants def _print_Exp1(self, expr): return 'E' def _print_Pi(self, expr): return 'Pi' def _print_GoldenRatio(self, expr): return 'GoldenRatio' def _print_TribonacciConstant(self, expr): return self.doprint(expr._eval_expand_func()) def _print_EulerGamma(self, expr): return 'EulerGamma' def _print_Catalan(self, expr): return 'Catalan' def _print_list(self, expr): return '{' + ', '.join(self.doprint(a) for a in expr) + '}' _print_tuple = _print_list _print_Tuple = _print_list def _print_ImmutableDenseMatrix(self, expr): return self.doprint(expr.tolist()) def _print_ImmutableSparseMatrix(self, expr): from sympy.core.compatibility import default_sort_key def print_rule(pos, val): return '{} -> {}'.format( self.doprint((pos[0]+1, pos[1]+1)), self.doprint(val)) def print_data(): items = sorted(expr._smat.items(), key=default_sort_key) return '{' + \ ', '.join(print_rule(k, v) for k, v in items) + \ '}' def print_dims(): return self.doprint(expr.shape) return 'SparseArray[{}, {}]'.format(print_data(), print_dims()) def _print_ImmutableDenseNDimArray(self, expr): return self.doprint(expr.tolist()) def _print_ImmutableSparseNDimArray(self, expr): def print_string_list(string_list): return '{' + ', '.join(a for a in string_list) + '}' def to_mathematica_index(*args): """Helper function to change Python style indexing to Pathematica indexing. Python indexing (0, 1 ... n-1) -> Mathematica indexing (1, 2 ... n) """ return tuple(i + 1 for i in args) def print_rule(pos, val): """Helper function to print a rule of Mathematica""" return '{} -> {}'.format(self.doprint(pos), self.doprint(val)) def print_data(): """Helper function to print data part of Mathematica sparse array. It uses the fourth notation ``SparseArray[data,{d1,d2,...}]`` from https://reference.wolfram.com/language/ref/SparseArray.html ``data`` must be formatted with rule. """ return print_string_list( [print_rule( to_mathematica_index(*(expr._get_tuple_index(key))), value) for key, value in sorted(expr._sparse_array.items())] ) def print_dims(): """Helper function to print dimensions part of Mathematica sparse array. It uses the fourth notation ``SparseArray[data,{d1,d2,...}]`` from https://reference.wolfram.com/language/ref/SparseArray.html """ return self.doprint(expr.shape) return 'SparseArray[{}, {}]'.format(print_data(), print_dims()) def _print_Function(self, expr): if expr.func.__name__ in self.known_functions: cond_mfunc = self.known_functions[expr.func.__name__] for cond, mfunc in cond_mfunc: if cond(*expr.args): return "%s[%s]" % (mfunc, self.stringify(expr.args, ", ")) return expr.func.__name__ + "[%s]" % self.stringify(expr.args, ", ") _print_MinMaxBase = _print_Function def _print_Integral(self, expr): if len(expr.variables) == 1 and not expr.limits[0][1:]: args = [expr.args[0], expr.variables[0]] else: args = expr.args return "Hold[Integrate[" + ', '.join(self.doprint(a) for a in args) + "]]" def _print_Sum(self, expr): return "Hold[Sum[" + ', '.join(self.doprint(a) for a in expr.args) + "]]" def _print_Derivative(self, expr): dexpr = expr.expr dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count] return "Hold[D[" + ', '.join(self.doprint(a) for a in [dexpr] + dvars) + "]]" def _get_comment(self, text): return "(* {} *)".format(text)
[docs]def mathematica_code(expr, **settings): r"""Converts an expr to a string of the Wolfram Mathematica code Examples ======== >>> from sympy import mathematica_code as mcode, symbols, sin >>> x = symbols('x') >>> mcode(sin(x).series(x).removeO()) '(1/120)*x^5 - 1/6*x^3 + x' """ return MCodePrinter(settings).doprint(expr)