Source code for sympy.printing.rust

"""
Rust code printer

The `RustCodePrinter` converts SymPy expressions into Rust expressions.

A complete code generator, which uses `rust_code` extensively, can be found
in `sympy.utilities.codegen`. The `codegen` module can be used to generate
complete source code files.

"""

# Possible Improvement
#
# * make sure we follow Rust Style Guidelines_
# * make use of pattern matching
# * better support for reference
# * generate generic code and use trait to make sure they have specific methods
# * use crates_ to get more math support
#     - num_
#         + BigInt_, BigUint_
#         + Complex_
#         + Rational64_, Rational32_, BigRational_
#
# .. _crates: https://crates.io/
# .. _Guidelines: https://github.com/rust-lang/rust/tree/master/src/doc/style
# .. _num: http://rust-num.github.io/num/num/
# .. _BigInt: http://rust-num.github.io/num/num/bigint/struct.BigInt.html
# .. _BigUint: http://rust-num.github.io/num/num/bigint/struct.BigUint.html
# .. _Complex: http://rust-num.github.io/num/num/complex/struct.Complex.html
# .. _Rational32: http://rust-num.github.io/num/num/rational/type.Rational32.html
# .. _Rational64: http://rust-num.github.io/num/num/rational/type.Rational64.html
# .. _BigRational: http://rust-num.github.io/num/num/rational/type.BigRational.html

from __future__ import print_function, division

from sympy.core import S, numbers, Rational, Float, Lambda
from sympy.core.compatibility import string_types, range
from sympy.printing.codeprinter import CodePrinter, Assignment
from sympy.printing.precedence import precedence

# Rust's methods for integer and float can be found at here :
#
# * `Rust - Primitive Type f64 <https://doc.rust-lang.org/std/primitive.f64.html>`_
# * `Rust - Primitive Type i64 <https://doc.rust-lang.org/std/primitive.i64.html>`_
#
# Function Style :
#
# 1. args[0].func(args[1:]), method with arguments
# 2. args[0].func(), method without arguments
# 3. args[1].func(), method without arguments (e.g. (e, x) => x.exp())
# 4. func(args), function with arguments

# dictionary mapping sympy function to (argument_conditions, Rust_function).
# Used in RustCodePrinter._print_Function(self)

# f64 method in Rust
known_functions = {
    "": "is_nan",
    "": "is_infinite",
    "": "is_finite",
    "": "is_normal",
    "": "classify",
    "floor": "floor",
    "ceiling": "ceil",
    "": "round",
    "": "trunc",
    "": "fract",
    "Abs": "abs",
    "sign": "signum",
    "": "is_sign_positive",
    "": "is_sign_negative",
    "": "mul_add",
    "Pow": [(lambda base, exp: exp == -S.One, "recip", 2),           # 1.0/x
            (lambda base, exp: exp == S.Half, "sqrt", 2),            # x ** 0.5
            (lambda base, exp: exp == -S.Half, "sqrt().recip", 2),   # 1/(x ** 0.5)
            (lambda base, exp: exp == Rational(1, 3), "cbrt", 2),    # x ** (1/3)
            (lambda base, exp: base == S.One*2, "exp2", 3),          # 2 ** x
            (lambda base, exp: exp.is_integer, "powi", 1),           # x ** y, for i32
            (lambda base, exp: not exp.is_integer, "powf", 1)],      # x ** y, for f64
    "exp": [(lambda exp: True, "exp", 2)],   # e ** x
    "log": "ln",
    "": "log",          # number.log(base)
    "": "log2",
    "": "log10",
    "": "to_degrees",
    "": "to_radians",
    "Max": "max",
    "Min": "min",
    "": "hypot",        # (x**2 + y**2) ** 0.5
    "sin": "sin",
    "cos": "cos",
    "tan": "tan",
    "asin": "asin",
    "acos": "acos",
    "atan": "atan",
    "atan2": "atan2",
    "": "sin_cos",
    "": "exp_m1",       # e ** x - 1
    "": "ln_1p",        # ln(1 + x)
    "sinh": "sinh",
    "cosh": "cosh",
    "tanh": "tanh",
    "asinh": "asinh",
    "acosh": "acosh",
    "atanh": "atanh",
}

# i64 method in Rust
# known_functions_i64 = {
#     "": "min_value",
#     "": "max_value",
#     "": "from_str_radix",
#     "": "count_ones",
#     "": "count_zeros",
#     "": "leading_zeros",
#     "": "trainling_zeros",
#     "": "rotate_left",
#     "": "rotate_right",
#     "": "swap_bytes",
#     "": "from_be",
#     "": "from_le",
#     "": "to_be",    # to big endian
#     "": "to_le",    # to little endian
#     "": "checked_add",
#     "": "checked_sub",
#     "": "checked_mul",
#     "": "checked_div",
#     "": "checked_rem",
#     "": "checked_neg",
#     "": "checked_shl",
#     "": "checked_shr",
#     "": "checked_abs",
#     "": "saturating_add",
#     "": "saturating_sub",
#     "": "saturating_mul",
#     "": "wrapping_add",
#     "": "wrapping_sub",
#     "": "wrapping_mul",
#     "": "wrapping_div",
#     "": "wrapping_rem",
#     "": "wrapping_neg",
#     "": "wrapping_shl",
#     "": "wrapping_shr",
#     "": "wrapping_abs",
#     "": "overflowing_add",
#     "": "overflowing_sub",
#     "": "overflowing_mul",
#     "": "overflowing_div",
#     "": "overflowing_rem",
#     "": "overflowing_neg",
#     "": "overflowing_shl",
#     "": "overflowing_shr",
#     "": "overflowing_abs",
#     "Pow": "pow",
#     "Abs": "abs",
#     "sign": "signum",
#     "": "is_positive",
#     "": "is_negnative",
# }

# These are the core reserved words in the Rust language. Taken from:
# http://doc.rust-lang.org/grammar.html#keywords

reserved_words = ['abstract',
                  'alignof',
                  'as',
                  'become',
                  'box',
                  'break',
                  'const',
                  'continue',
                  'crate',
                  'do',
                  'else',
                  'enum',
                  'extern',
                  'false',
                  'final',
                  'fn',
                  'for',
                  'if',
                  'impl',
                  'in',
                  'let',
                  'loop',
                  'macro',
                  'match',
                  'mod',
                  'move',
                  'mut',
                  'offsetof',
                  'override',
                  'priv',
                  'proc',
                  'pub',
                  'pure',
                  'ref',
                  'return',
                  'Self',
                  'self',
                  'sizeof',
                  'static',
                  'struct',
                  'super',
                  'trait',
                  'true',
                  'type',
                  'typeof',
                  'unsafe',
                  'unsized',
                  'use',
                  'virtual',
                  'where',
                  'while',
                  'yield']


[docs]class RustCodePrinter(CodePrinter): """A printer to convert python expressions to strings of Rust code""" printmethod = "_rust_code" language = "Rust" _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'contract': True, 'dereference': set(), 'error_on_reserved': False, 'reserved_word_suffix': '_', 'inline': False, } def __init__(self, settings={}): CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) self._dereference = set(settings.get('dereference', [])) self.reserved_words = set(reserved_words) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s;" % codestring def _get_comment(self, text): return "// %s" % text def _declare_number_const(self, name, value): return "const %s: f64 = %s;" % (name, value) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): rows, cols = mat.shape return ((i, j) for i in range(rows) for j in range(cols)) def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] loopstart = "for %(var)s in %(start)s..%(end)s {" for i in indices: # Rust arrays start at 0 and end at dimension-1 open_lines.append(loopstart % { 'var': self._print(i), 'start': self._print(i.lower), 'end': self._print(i.upper + 1)}) close_lines.append("}") return open_lines, close_lines def _print_caller_var(self, expr): if len(expr.args) > 1: # for something like `sin(x + y + z)`, # make sure we can get '(x + y + z).sin()' # instead of 'x + y + z.sin()' return '(' + self._print(expr) + ')' elif expr.is_number: return self._print(expr, _type=True) else: return self._print(expr) def _print_Function(self, expr): """ basic function for printing `Function` Function Style : 1. args[0].func(args[1:]), method with arguments 2. args[0].func(), method without arguments 3. args[1].func(), method without arguments (e.g. (e, x) => x.exp()) 4. func(args), function with arguments """ if expr.func.__name__ in self.known_functions: cond_func = self.known_functions[expr.func.__name__] func = None style = 1 if isinstance(cond_func, string_types): func = cond_func else: for cond, func, style in cond_func: if cond(*expr.args): break if func is not None: if style == 1: ret = "%(var)s.%(method)s(%(args)s)" % { 'var': self._print_caller_var(expr.args[0]), 'method': func, 'args': self.stringify(expr.args[1:], ", ") if len(expr.args) > 1 else '' } elif style == 2: ret = "%(var)s.%(method)s()" % { 'var': self._print_caller_var(expr.args[0]), 'method': func, } elif style == 3: ret = "%(var)s.%(method)s()" % { 'var': self._print_caller_var(expr.args[1]), 'method': func, } else: ret = "%(func)s(%(args)s)" % { 'func': func, 'args': self.stringify(expr.args, ", "), } return ret elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda): # inlined function return self._print(expr._imp_(*expr.args)) else: return self._print_not_supported(expr) def _print_Pow(self, expr): if expr.base.is_integer and not expr.exp.is_integer: expr = type(expr)(Float(expr.base), expr.exp) return self._print(expr) return self._print_Function(expr) def _print_Float(self, expr, _type=False): ret = super(RustCodePrinter, self)._print_Float(expr) if _type: return ret + '_f64' else: return ret def _print_Integer(self, expr, _type=False): ret = super(RustCodePrinter, self)._print_Integer(expr) if _type: return ret + '_i32' else: return ret def _print_Rational(self, expr): p, q = int(expr.p), int(expr.q) return '%d_f64/%d.0' % (p, q) def _print_Indexed(self, expr): # calculate index for 1d array dims = expr.shape elem = S.Zero offset = S.One for i in reversed(range(expr.rank)): elem += expr.indices[i]*offset offset *= dims[i] return "%s[%s]" % (self._print(expr.base.label), self._print(elem)) def _print_Idx(self, expr): return expr.label.name def _print_Dummy(self, expr): return expr.name def _print_Exp1(self, expr, _type=False): return "E" def _print_Pi(self, expr, _type=False): return 'PI' def _print_Infinity(self, expr, _type=False): return 'INFINITY' def _print_NegativeInfinity(self, expr, _type=False): return 'NEG_INFINITY' def _print_BooleanTrue(self, expr, _type=False): return "true" def _print_BooleanFalse(self, expr, _type=False): return "false" def _print_bool(self, expr, _type=False): return str(expr).lower() def _print_NaN(self, expr, _type=False): return "NAN" def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s) {" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines[-1] += " else {" else: lines[-1] += " else if (%s) {" % self._print(c) code0 = self._print(e) lines.append(code0) lines.append("}") if self._settings['inline']: return " ".join(lines) else: return "\n".join(lines) def _print_ITE(self, expr): from sympy.functions import Piecewise _piecewise = Piecewise((expr.args[1], expr.args[0]), (expr.args[2], True)) return self._print(_piecewise) def _print_Matrix(self, expr): return "%s[%s]" % (expr.parent, expr.j + expr.i*expr.parent.shape[1]) def _print_MatrixBase(self, A): if A.cols == 1: return "[%s]" % ", ".join(self._print(a) for a in A) else: raise ValueError("Full Matrix Support in Rust need Crates (https://crates.io/keywords/matrix).") def _print_MatrixElement(self, expr): return "%s[%s]" % (expr.parent, expr.j + expr.i*expr.parent.shape[1]) # FIXME: Str/CodePrinter could define each of these to call the _print # method from higher up the class hierarchy (see _print_NumberSymbol). # Then subclasses like us would not need to repeat all this. _print_Matrix = \ _print_MatrixElement = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _print_Symbol(self, expr): name = super(RustCodePrinter, self)._print_Symbol(expr) if expr in self._dereference: return '(*%s)' % name else: return name def _print_Assignment(self, expr): from sympy.tensor.indexed import IndexedBase lhs = expr.lhs rhs = expr.rhs if self._settings["contract"] and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code))
[docs] def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_token = ('{', '(', '{\n', '(\n') dec_token = ('}', ')') code = [ line.lstrip(' \t') for line in code ] increase = [ int(any(map(line.endswith, inc_token))) for line in code ] decrease = [ int(any(map(line.startswith, dec_token))) for line in code ] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty
[docs]def rust_code(expr, assign_to=None, **settings): """Converts an expr to a string of Rust code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. precision : integer, optional The precision for numbers such as pi [default=15]. user_functions : dict, optional A dictionary where the keys are string representations of either ``FunctionClass`` or ``UndefinedFunction`` instances and the values are their desired C string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. dereference : iterable, optional An iterable of symbols that should be dereferenced in the printed code expression. These would be values passed by address to the function. For example, if ``dereference=[a]``, the resulting code would print ``(*a)`` instead of ``a``. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import rust_code, symbols, Rational, sin, ceiling, Abs, Function >>> x, tau = symbols("x, tau") >>> rust_code((2*tau)**Rational(7, 2)) '8*1.4142135623731*tau.powf(7_f64/2.0)' >>> rust_code(sin(x), assign_to="s") 's = x.sin();' Simple custom printing can be defined for certain types by passing a dictionary of {"type" : "function"} to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs", 4), ... (lambda x: x.is_integer, "ABS", 4)], ... "func": "f" ... } >>> func = Function('func') >>> rust_code(func(Abs(x) + ceiling(x)), user_functions=custom_functions) '(fabs(x) + x.CEIL()).f()' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(rust_code(expr, tau)) tau = if (x > 0) { x + 1 } else { x }; Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> rust_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(rust_code(mat, A)) A = [x.powi(2), if (x > 0) { x + 1 } else { x }, x.sin()]; """ return RustCodePrinter(settings).doprint(expr, assign_to)
def print_rust_code(expr, **settings): """Prints Rust representation of the given expression.""" print(rust_code(expr, **settings))