Source code for sympy.series.limitseq

"""Limits of sequences"""

from __future__ import print_function, division

from sympy.core.add import Add
from sympy.core.function import PoleError
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.numbers import fibonacci
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import Max, Min
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.series.limits import Limit


[docs]def difference_delta(expr, n=None, step=1): """Difference Operator. Discrete analog of differential operator. Given a sequence x[n], returns the sequence x[n + step] - x[n]. Examples ======== >>> from sympy import difference_delta as dd >>> from sympy.abc import n >>> dd(n*(n + 1), n) 2*n + 2 >>> dd(n*(n + 1), n, 2) 4*n + 6 References ========== .. [1] https://reference.wolfram.com/language/ref/DifferenceDelta.html """ expr = sympify(expr) if n is None: f = expr.free_symbols if len(f) == 1: n = f.pop() elif len(f) == 0: return S.Zero else: raise ValueError("Since there is more than one variable in the" " expression, a variable must be supplied to" " take the difference of %s" % expr) step = sympify(step) if step.is_number is False or step.is_finite is False: raise ValueError("Step should be a finite number.") if hasattr(expr, '_eval_difference_delta'): result = expr._eval_difference_delta(n, step) if result: return result return expr.subs(n, n + step) - expr
[docs]def dominant(expr, n): """Finds the dominant term in a sum, that is a term that dominates every other term. If limit(a/b, n, oo) is oo then a dominates b. If limit(a/b, n, oo) is 0 then b dominates a. Otherwise, a and b are comparable. If there is no unique dominant term, then returns ``None``. Examples ======== >>> from sympy import Sum >>> from sympy.series.limitseq import dominant >>> from sympy.abc import n, k >>> dominant(5*n**3 + 4*n**2 + n + 1, n) 5*n**3 >>> dominant(2**n + Sum(k, (k, 0, n)), n) 2**n See Also ======== sympy.series.limitseq.dominant """ terms = Add.make_args(expr.expand(func=True)) term0 = terms[-1] comp = [term0] # comparable terms for t in terms[:-1]: e = (term0 / t).gammasimp() l = limit_seq(e, n) if l is S.Zero: term0 = t comp = [term0] elif l is None: return None elif l not in [S.Infinity, -S.Infinity]: comp.append(t) if len(comp) > 1: return None return term0
def _limit_inf(expr, n): try: return Limit(expr, n, S.Infinity).doit(deep=False) except (NotImplementedError, PoleError): return None def _limit_seq(expr, n, trials): from sympy.concrete.summations import Sum for i in range(trials): if not expr.has(Sum): result = _limit_inf(expr, n) if result is not None: return result num, den = expr.as_numer_denom() if not den.has(n) or not num.has(n): result = _limit_inf(expr.doit(), n) if result is not None: return result return None num, den = (difference_delta(t.expand(), n) for t in [num, den]) expr = (num / den).gammasimp() if not expr.has(Sum): result = _limit_inf(expr, n) if result is not None: return result num, den = expr.as_numer_denom() num = dominant(num, n) if num is None: return None den = dominant(den, n) if den is None: return None expr = (num / den).gammasimp()
[docs]def limit_seq(expr, n=None, trials=5): """Finds the limit of a sequence as index n tends to infinity. Parameters ========== expr : Expr SymPy expression for the n-th term of the sequence n : Symbol, optional The index of the sequence, an integer that tends to positive infinity. If None, inferred from the expression unless it has multiple symbols. trials: int, optional The algorithm is highly recursive. ``trials`` is a safeguard from infinite recursion in case the limit is not easily computed by the algorithm. Try increasing ``trials`` if the algorithm returns ``None``. Admissible Terms ================ The algorithm is designed for sequences built from rational functions, indefinite sums, and indefinite products over an indeterminate n. Terms of alternating sign are also allowed, but more complex oscillatory behavior is not supported. Examples ======== >>> from sympy import limit_seq, Sum, binomial >>> from sympy.abc import n, k, m >>> limit_seq((5*n**3 + 3*n**2 + 4) / (3*n**3 + 4*n - 5), n) 5/3 >>> limit_seq(binomial(2*n, n) / Sum(binomial(2*k, k), (k, 1, n)), n) 3/4 >>> limit_seq(Sum(k**2 * Sum(2**m/m, (m, 1, k)), (k, 1, n)) / (2**n*n), n) 4 See Also ======== sympy.series.limitseq.dominant References ========== .. [1] Computing Limits of Sequences - Manuel Kauers """ from sympy.concrete.summations import Sum from sympy.calculus.util import AccumulationBounds if n is None: free = expr.free_symbols if len(free) == 1: n = free.pop() elif not free: return expr else: raise ValueError("Expression has more than one variable. " "Please specify a variable.") elif n not in expr.free_symbols: return expr expr = expr.rewrite(fibonacci, S.GoldenRatio) n_ = Dummy("n", integer=True, positive=True) n1 = Dummy("n", odd=True, positive=True) n2 = Dummy("n", even=True, positive=True) # If there is a negative term raised to a power involving n, or a # trigonometric function, then consider even and odd n separately. powers = (p.as_base_exp() for p in expr.atoms(Pow)) if (any(b.is_negative and e.has(n) for b, e in powers) or expr.has(cos, sin)): L1 = _limit_seq(expr.xreplace({n: n1}), n1, trials) if L1 is not None: L2 = _limit_seq(expr.xreplace({n: n2}), n2, trials) if L1 != L2: if L1.is_comparable and L2.is_comparable: return AccumulationBounds(Min(L1, L2), Max(L1, L2)) else: return None else: L1 = _limit_seq(expr.xreplace({n: n_}), n_, trials) if L1 is not None: return L1 else: if expr.is_Add: limits = [limit_seq(term, n, trials) for term in expr.args] if any(result is None for result in limits): return None else: return Add(*limits) # Maybe the absolute value is easier to deal with (though not if # it has a Sum). If it tends to 0, the limit is 0. elif not expr.has(Sum): if _limit_seq(Abs(expr.xreplace({n: n_})), n_, trials) is S.Zero: return S.Zero