Algebras Module

Introduction

The Algebras module for SymPy provides support for basic algebraic operations on Quaternions.

Quaternion Reference

This section lists the classes implemented by the Algebras module.

class sympy.algebras.Quaternion[source]

Provides basic quaternion operations. Quaternion objects can be instantiated as Quaternion(a, b, c, d) as in (a + b*i + c*j + d*k).

Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q
1 + 2*i + 3*j + 4*k

Quaternions over complex fields can be defined as :

>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols, I
>>> x = symbols('x')
>>> q1 = Quaternion(x, x**3, x, x**2, real_field = False)
>>> q2 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q1
x + x**3*i + x*j + x**2*k
>>> q2
(3 + 4*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
add(other)[source]

Adds quaternions.

Parameters

other : Quaternion

The quaternion to add to current (self) quaternion.

Returns

Quaternion

The resultant quaternion after adding self to other

Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.add(q2)
6 + 8*i + 10*j + 12*k
>>> q1 + 5
6 + 2*i + 3*j + 4*k
>>> x = symbols('x', real = True)
>>> q1.add(x)
(x + 1) + 2*i + 3*j + 4*k

Quaternions over complex fields :

>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.add(2 + 3*I)
(5 + 7*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
exp()[source]

Returns the exponential of q (e^q).

Returns

Quaternion

Exponential of q (e^q).

Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.exp()
E*cos(sqrt(29))
+ 2*sqrt(29)*E*sin(sqrt(29))/29*i
+ 3*sqrt(29)*E*sin(sqrt(29))/29*j
+ 4*sqrt(29)*E*sin(sqrt(29))/29*k
classmethod from_axis_angle(vector, angle)[source]

Returns a rotation quaternion given the axis and the angle of rotation.

Parameters

vector : tuple of three numbers

The vector representation of the given axis.

angle : number

The angle by which axis is rotated (in radians).

Returns

Quaternion

The normalized rotation quaternion calculated from the given axis and the angle of rotation.

Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import pi, sqrt
>>> q = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3)
>>> q
1/2 + 1/2*i + 1/2*j + 1/2*k
classmethod from_rotation_matrix(M)[source]

Returns the equivalent quaternion of a matrix. The quaternion will be normalized only if the matrix is special orthogonal (orthogonal and det(M) = 1).

Parameters

M : Matrix

Input matrix to be converted to equivalent quaternion. M must be special orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized.

Returns

Quaternion

The quaternion equivalent to given matrix.

Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import Matrix, symbols, cos, sin, trigsimp
>>> x = symbols('x')
>>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]])
>>> q = trigsimp(Quaternion.from_rotation_matrix(M))
>>> q
sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(2 - 2*cos(x))/2*k
inverse()[source]

Returns the inverse of the quaternion.

mul(other)[source]

Multiplies quaternions.

Parameters

other : Quaternion or symbol

The quaternion to multiply to current (self) quaternion.

Returns

Quaternion

The resultant quaternion after multiplying self with other

Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.mul(q2)
(-60) + 12*i + 30*j + 24*k
>>> q1.mul(2)
2 + 4*i + 6*j + 8*k
>>> x = symbols('x', real = True)
>>> q1.mul(x)
x + 2*x*i + 3*x*j + 4*x*k

Quaternions over complex fields :

>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.mul(2 + 3*I)
(2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
norm()[source]

Returns the norm of the quaternion.

normalize()[source]

Returns the normalized form of the quaternion.

pow(p)[source]

Finds the pth power of the quaternion.

Parameters

p : int

Power to be applied on quaternion.

Returns

Quaternion

Returns the p-th power of the current quaternion. Returns the inverse if p = -1.

Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow(4)
668 + (-224)*i + (-336)*j + (-448)*k
pow_cos_sin(p)[source]

Computes the pth power in the cos-sin form.

Parameters

p : int

Power to be applied on quaternion.

Returns

Quaternion

The p-th power in the cos-sin form.

Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow_cos_sin(4)
900*cos(4*acos(sqrt(30)/30))
+ 1800*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*i
+ 2700*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*j
+ 3600*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*k
static rotate_point(pin, r)[source]

Returns the coordinates of the point pin(a 3 tuple) after rotation.

Parameters

pin : tuple

A 3-element tuple of coordinates of a point. This point will be the axis of rotation.

r

Angle to be rotated.

Returns

tuple

The coordinates of the quaternion after rotation.

Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), q))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
>>> (axis, angle) = q.to_axis_angle()
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle)))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
to_axis_angle()[source]

Returns the axis and angle of rotation of a quaternion

Returns

tuple

Tuple of (axis, angle)

Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> (axis, angle) = q.to_axis_angle()
>>> axis
(sqrt(3)/3, sqrt(3)/3, sqrt(3)/3)
>>> angle
2*pi/3
to_rotation_matrix(v=None)[source]

Returns the equivalent rotation transformation matrix of the quaternion which represents rotation about the origin if v is not passed.

Parameters

v : tuple or None

Default value: None

Returns

tuple

Returns the equivalent rotation transformation matrix of the quaternion which represents rotation about the origin if v is not passed.

Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(q.to_rotation_matrix((1, 1, 1)))
 Matrix([
[cos(x), -sin(x), 0,  sin(x) - cos(x) + 1],
[sin(x),  cos(x), 0, -sin(x) - cos(x) + 1],
[     0,       0, 1,                    0],
[     0,       0, 0,                    1]])