Hydrogen Wavefunctions¶
-
sympy.physics.hydrogen.
E_nl
(n, Z=1)[source]¶ Returns the energy of the state (n, l) in Hartree atomic units.
The energy doesn’t depend on “l”.
Examples
>>> from sympy import var >>> from sympy.physics.hydrogen import E_nl >>> var("n Z") (n, Z) >>> E_nl(n, Z) -Z**2/(2*n**2) >>> E_nl(1) -1/2 >>> E_nl(2) -1/8 >>> E_nl(3) -1/18 >>> E_nl(3, 47) -2209/18
-
sympy.physics.hydrogen.
E_nl_dirac
(n, l, spin_up=True, Z=1, c=137.035999037000)[source]¶ Returns the relativistic energy of the state (n, l, spin) in Hartree atomic units.
The energy is calculated from the Dirac equation. The rest mass energy is not included.
- n, l
quantum numbers ‘n’ and ‘l’
- spin_up
True if the electron spin is up (default), otherwise down
- Z
atomic number (1 for Hydrogen, 2 for Helium, …)
- c
speed of light in atomic units. Default value is 137.035999037, taken from: http://arxiv.org/abs/1012.3627
Examples
>>> from sympy.physics.hydrogen import E_nl_dirac >>> E_nl_dirac(1, 0) -0.500006656595360
>>> E_nl_dirac(2, 0) -0.125002080189006 >>> E_nl_dirac(2, 1) -0.125000416028342 >>> E_nl_dirac(2, 1, False) -0.125002080189006
>>> E_nl_dirac(3, 0) -0.0555562951740285 >>> E_nl_dirac(3, 1) -0.0555558020932949 >>> E_nl_dirac(3, 1, False) -0.0555562951740285 >>> E_nl_dirac(3, 2) -0.0555556377366884 >>> E_nl_dirac(3, 2, False) -0.0555558020932949
-
sympy.physics.hydrogen.
Psi_nlm
(n, l, m, r, phi, theta, Z=1)[source]¶ Returns the Hydrogen wave function psi_{nlm}. It’s the product of the radial wavefunction R_{nl} and the spherical harmonic Y_{l}^{m}.
- n, l, m
quantum numbers ‘n’, ‘l’ and ‘m’
- r
radial coordinate
- phi
azimuthal angle
- theta
polar angle
- Z
atomic number (1 for Hydrogen, 2 for Helium, …)
Everything is in Hartree atomic units.
Examples
>>> from sympy.physics.hydrogen import Psi_nlm >>> from sympy import Symbol >>> r=Symbol("r", real=True, positive=True) >>> phi=Symbol("phi", real=True) >>> theta=Symbol("theta", real=True) >>> Z=Symbol("Z", positive=True, integer=True, nonzero=True) >>> Psi_nlm(1,0,0,r,phi,theta,Z) Z**(3/2)*exp(-Z*r)/sqrt(pi) >>> Psi_nlm(2,1,1,r,phi,theta,Z) -Z**(5/2)*r*exp(I*phi)*exp(-Z*r/2)*sin(theta)/(8*sqrt(pi))
Integrating the absolute square of a hydrogen wavefunction psi_{nlm} over the whole space leads 1.
The normalization of the hydrogen wavefunctions Psi_nlm is:
>>> from sympy import integrate, conjugate, pi, oo, sin >>> wf=Psi_nlm(2,1,1,r,phi,theta,Z) >>> abs_sqrd=wf*conjugate(wf) >>> jacobi=r**2*sin(theta) >>> integrate(abs_sqrd*jacobi, (r,0,oo), (phi,0,2*pi), (theta,0,pi)) 1
-
sympy.physics.hydrogen.
R_nl
(n, l, r, Z=1)[source]¶ Returns the Hydrogen radial wavefunction R_{nl}.
- n, l
quantum numbers ‘n’ and ‘l’
- r
radial coordinate
- Z
atomic number (1 for Hydrogen, 2 for Helium, …)
Everything is in Hartree atomic units.
Examples
>>> from sympy.physics.hydrogen import R_nl >>> from sympy import var >>> var("r Z") (r, Z) >>> R_nl(1, 0, r, Z) 2*sqrt(Z**3)*exp(-Z*r) >>> R_nl(2, 0, r, Z) sqrt(2)*(-Z*r + 2)*sqrt(Z**3)*exp(-Z*r/2)/4 >>> R_nl(2, 1, r, Z) sqrt(6)*Z*r*sqrt(Z**3)*exp(-Z*r/2)/12
For Hydrogen atom, you can just use the default value of Z=1:
>>> R_nl(1, 0, r) 2*exp(-r) >>> R_nl(2, 0, r) sqrt(2)*(2 - r)*exp(-r/2)/4 >>> R_nl(3, 0, r) 2*sqrt(3)*(2*r**2/9 - 2*r + 3)*exp(-r/3)/27
For Silver atom, you would use Z=47:
>>> R_nl(1, 0, r, Z=47) 94*sqrt(47)*exp(-47*r) >>> R_nl(2, 0, r, Z=47) 47*sqrt(94)*(2 - 47*r)*exp(-47*r/2)/4 >>> R_nl(3, 0, r, Z=47) 94*sqrt(141)*(4418*r**2/9 - 94*r + 3)*exp(-47*r/3)/27
The normalization of the radial wavefunction is:
>>> from sympy import integrate, oo >>> integrate(R_nl(1, 0, r)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 0, r)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 1, r)**2 * r**2, (r, 0, oo)) 1
It holds for any atomic number:
>>> integrate(R_nl(1, 0, r, Z=2)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 0, r, Z=3)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 1, r, Z=4)**2 * r**2, (r, 0, oo)) 1