Class RaggedTensor
Defined in tensorflow/python/ops/ragged/ragged_tensor.py.
Represents a ragged tensor.
A RaggedTensor is a tensor with one or more ragged dimensions, which are
dimensions whose slices may have different lengths. For example, the inner
(column) dimension of rt=[[3, 1, 4, 1], [], [5, 9, 2], [6], []] is ragged,
since the column slices (rt[0, :], ..., rt[4, :]) have different lengths.
Dimensions whose slices all have the same length are called uniform
dimensions. The outermost dimension of a RaggedTensor is always uniform,
since it consists of a single slice (and so there is no possibility for
differing slice lengths).
The total number of dimensions in a RaggedTensor is called its rank,
and the number of ragged dimensions in a RaggedTensor is called its
ragged-rank. A RaggedTensor's ragged-rank is fixed at graph creation
time: it can't depend on the runtime values of Tensors, and can't vary
dynamically for different session runs.
Potentially Ragged Tensors
Many ops support both Tensors and RaggedTensors. The term "potentially
ragged tensor" may be used to refer to a tensor that might be either a
Tensor or a RaggedTensor. The ragged-rank of a Tensor is zero.
Documenting RaggedTensor Shapes
When documenting the shape of a RaggedTensor, ragged dimensions can be
indicated by enclosing them in parentheses. For example, the shape of
a 3-D RaggedTensor that stores the fixed-size word embedding for each
word in a sentence, for each sentence in a batch, could be written as
[num_sentences, (num_words), embedding_size]. The parentheses around
(num_words) indicate that dimension is ragged, and that the length
of each element list in that dimension may vary for each item.
Component Tensors
Internally, a RaggedTensor consists of a concatenated list of values that
are partitioned into variable-length rows. In particular, each RaggedTensor
consists of:
A
valuestensor, which concatenates the variable-length rows into a flattened list. For example, thevaluestensor for[[3, 1, 4, 1], [], [5, 9, 2], [6], []]is[3, 1, 4, 1, 5, 9, 2, 6].A
row_splitsvector, which indicates how those flattened values are divided into rows. In particular, the values for rowrt[i]are stored in the slicert.values[rt.row_splits[i]:rt.row_splits[i+1]].
Example:
>>> print(tf.RaggedTensor.from_row_splits(
... values=[3, 1, 4, 1, 5, 9, 2, 6],
... row_splits=[0, 4, 4, 7, 8, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>
Alternative Row-Partitioning Schemes
In addition to row_splits, ragged tensors provide support for four other
row-partitioning schemes:
row_lengths: a vector with shape[nrows], which specifies the length of each row.value_rowidsandnrows:value_rowidsis a vector with shape[nvals], corresponding one-to-one withvalues, which specifies each value's row index. In particular, the rowrt[row]consists of the valuesrt.values[j]wherevalue_rowids[j]==row.nrowsis an int64 scalar that specifies the number of rows in theRaggedTensor. (nrowsis used to indicate trailing empty rows.)row_starts: a vector with shape[nrows], which specifies the start offset of each row. Equivalent torow_splits[:-1].row_limits: a vector with shape[nrows], which specifies the stop offset of each row. Equivalent torow_splits[1:].
Example: The following ragged tensors are equivalent, and all represent the
nested list [[3, 1, 4, 1], [], [5, 9, 2], [6], []].
>>> values = [3, 1, 4, 1, 5, 9, 2, 6]
>>> rt1 = RaggedTensor.from_row_splits(values, row_splits=[0, 4, 4, 7, 8, 8])
>>> rt2 = RaggedTensor.from_row_lengths(values, row_lengths=[4, 0, 3, 1, 0])
>>> rt3 = RaggedTensor.from_value_rowids(
... values, value_rowids=[0, 0, 0, 0, 2, 2, 2, 3], nrows=5)
>>> rt4 = RaggedTensor.from_row_starts(values, row_starts=[0, 4, 4, 7, 8])
>>> rt5 = RaggedTensor.from_row_limits(values, row_limits=[4, 4, 7, 8, 8])
Multiple Ragged Dimensions
RaggedTensors with multiple ragged dimensions can be defined by using
a nested RaggedTensor for the values tensor. Each nested RaggedTensor
adds a single ragged dimension.
>>> inner_rt = RaggedTensor.from_row_splits( # =rt1 from above
... values=[3, 1, 4, 1, 5, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8])
>>> outer_rt = RaggedTensor.from_row_splits(
... values=inner_rt, row_splits=[0, 3, 3, 5])
>>> print outer_rt.to_list()
[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]
>>> print outer_rt.ragged_rank
2
The factory function RaggedTensor.from_nested_row_splits may be used to
construct a RaggedTensor with multiple ragged dimensions directly, by
providing a list of row_splits tensors:
>>> RaggedTensor.from_nested_row_splits(
... flat_values=[3, 1, 4, 1, 5, 9, 2, 6],
... nested_row_splits=([0, 3, 3, 5], [0, 4, 4, 7, 8, 8])).to_list()
[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]
Uniform Inner Dimensions
RaggedTensors with uniform inner dimensions can be defined
by using a multidimensional Tensor for values.
>>> rt = RaggedTensor.from_row_splits(values=tf.ones([5, 3]),
.. row_splits=[0, 2, 5])
>>> print rt.to_list()
[[[1, 1, 1], [1, 1, 1]],
[[1, 1, 1], [1, 1, 1], [1, 1, 1]]]
>>> print rt.shape
(2, ?, 3)
RaggedTensor Shape Restrictions
The shape of a RaggedTensor is currently restricted to have the following form:
- A single uniform dimension
- Followed by one or more ragged dimensions
- Followed by zero or more uniform dimensions.
This restriction follows from the fact that each nested RaggedTensor
replaces the uniform outermost dimension of its values with a uniform
dimension followed by a ragged dimension.
__init__
__init__(
values,
row_splits,
cached_row_lengths=None,
cached_value_rowids=None,
cached_nrows=None,
internal=False
)
Creates a RaggedTensor with a specified partitioning for values.
This constructor is private -- please use one of the following ops to
build RaggedTensors:
tf.RaggedTensor.from_row_lengthstf.RaggedTensor.from_value_rowidstf.RaggedTensor.from_row_splitstf.RaggedTensor.from_row_startstf.RaggedTensor.from_row_limitstf.RaggedTensor.from_nested_row_splitstf.RaggedTensor.from_nested_row_lengthstf.RaggedTensor.from_nested_value_rowids
Args:
values: A potentially ragged tensor of any dtype and shape[nvals, ...].row_splits: A 1-D int64 tensor with shape[nrows+1].cached_row_lengths: A 1-D int64 tensor with shape[nrows]cached_value_rowids: A 1-D int64 tensor with shape[nvals].cached_nrows: A 1-D int64 scalar tensor.internal: True if the constructor is being called by one of the factory methods. If false, an exception will be raised.
Raises:
TypeError: If a row partitioning tensor has an inappropriate dtype.TypeError: If exactly one row partitioning argument was not specified.ValueError: If a row partitioning tensor has an inappropriate shape.ValueError: If multiple partitioning arguments are specified.ValueError: If nrows is specified but value_rowids is not None.
Properties
dtype
The DType of values in this tensor.
flat_values
The innermost values tensor for this ragged tensor.
Concretely, if rt.values is a Tensor, then rt.flat_values is
rt.values; otherwise, rt.flat_values is rt.values.flat_values.
Conceptually, flat_values is the tensor formed by flattening the
outermost dimension and all of the ragged dimensions into a single
dimension.
rt.flat_values.shape = [nvals] + rt.shape[rt.ragged_rank + 1:]
(where nvals is the number of items in the flattened dimensions).
Returns:
A Tensor.
Example:
>>> rt = ragged.constant([[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]) >>> print rt.flat_values() tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6])
nested_row_splits
A tuple containing the row_splits for all ragged dimensions.
rt.nested_row_splits is a tuple containing the row_splits tensors for
all ragged dimensions in rt, ordered from outermost to innermost. In
particular, rt.nested_row_splits = (rt.row_splits,) + value_splits where:
* `value_splits = ()` if `rt.values` is a `Tensor`.
* `value_splits = rt.values.nested_row_splits` otherwise.
Returns:
A tuple of 1-D int64 Tensors.
Example:
>>> rt = ragged.constant([[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]]) >>> for i, splits in enumerate(rt.nested_row_splits()): ... print('Splits for dimension %d: %s' % (i+1, splits)) Splits for dimension 1: [0, 1] Splits for dimension 2: [0, 3, 3, 5] Splits for dimension 3: [0, 4, 4, 7, 8, 8]
ragged_rank
The number of ragged dimensions in this ragged tensor.
Returns:
A Python int indicating the number of ragged dimensions in this ragged
tensor. The outermost dimension is not considered ragged.
row_splits
The row-split indices for this ragged tensor's values.
rt.row_splits specifies where the values for each row begin and end in
rt.values. In particular, the values for row rt[i] are stored in
the slice rt.values[rt.row_splits[i]:rt.row_splits[i+1]].
Returns:
A 1-D int64 Tensor with shape [self.nrows+1].
The returned tensor is non-empty, and is sorted in ascending order.
self.row_splits[0] is zero, and self.row_splits[-1] is equal to
self.values.shape[0].
Example:
>>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> print rt.row_splits # indices of row splits in rt.values tf.Tensor([0, 4, 4, 7, 8, 8])
shape
The statically known shape of this ragged tensor.
Returns:
A TensorShape containing the statically known shape of this ragged
tensor. Ragged dimensions have a size of None.
Examples:
>>> ragged.constant([[0], [1, 2]]).shape TensorShape([Dimension(2), Dimension(None)]) >>> ragged.constant([[[0, 1]], [[1, 2], [3, 4]]], ragged_rank=1).shape TensorShape([Dimension(2), Dimension(None), Dimension(2)
values
The concatenated rows for this ragged tensor.
rt.values is a potentially ragged tensor formed by flattening the two
outermost dimensions of rt into a single dimension.
rt.values.shape = [nvals] + rt.shape[2:] (where nvals is the
number of items in the outer two dimensions of rt).
rt.ragged_rank = self.ragged_rank - 1
Returns:
A potentially ragged tensor.
Example:
>>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> print rt.values tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6])
Methods
tf.RaggedTensor.__abs__
__abs__(
x,
name=None
)
Computes the absolute value of a tensor.
Given a tensor x of complex numbers, this operation returns a tensor of type
float32 or float64 that is the absolute value of each element in x. All
elements in x must be complex numbers of the form \(a + bj\). The
absolute value is computed as \( \sqrt{a^2 + b^2}\). For example:
x = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]])
tf.abs(x) # [5.25594902, 6.60492229]
Args:
x: ATensororSparseTensorof typefloat16,float32,float64,int32,int64,complex64orcomplex128.name: A name for the operation (optional).
Returns:
A Tensor or SparseTensor the same size and type as x with absolute
values.
Note, for complex64 or complex128 input, the returned Tensor will be
of type float32 or float64, respectively.
If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.abs(x.values, ...), x.dense_shape)
tf.RaggedTensor.__add__
__add__(
x,
y,
name=None
)
Returns x + y element-wise.
NOTE: math.add supports broadcasting. AddN does not. More about broadcasting
here
Args:
x: ATensor. Must be one of the following types:bfloat16,half,float32,float64,uint8,int8,int16,int32,int64,complex64,complex128,string.y: ATensor. Must have the same type asx.name: A name for the operation (optional).
Returns:
A Tensor. Has the same type as x.
tf.RaggedTensor.__and__
__and__(
x,
y,
name=None
)
Returns the truth value of x AND y element-wise.
NOTE: math.logical_and supports broadcasting. More about broadcasting
here
Args:
x: ATensorof typebool.y: ATensorof typebool.name: A name for the operation (optional).
Returns:
A Tensor of type bool.
tf.RaggedTensor.__bool__
__bool__(_)
Dummy method to prevent a RaggedTensor from being used as a Python bool.
tf.RaggedTensor.__div__
__div__(
x,
y,
name=None
)
Divides x / y elementwise (using Python 2 division operator semantics). (deprecated)
NOTE: Prefer using the Tensor division operator or tf.divide which obey Python division operator semantics.
This function divides x and y, forcing Python 2.7 semantics. That is,
if one of x or y is a float, then the result will be a float.
Otherwise, the output will be an integer type. Flooring semantics are used
for integer division.
Args:
x:Tensornumerator of real numeric type.y:Tensordenominator of real numeric type.name: A name for the operation (optional).
Returns:
x / y returns the quotient of x and y.
tf.RaggedTensor.__floordiv__
__floordiv__(
x,
y,
name=None
)
Divides x / y elementwise, rounding toward the most negative integer.
The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.
x and y must have the same type, and the result will have the same type
as well.
Args:
x:Tensornumerator of real numeric type.y:Tensordenominator of real numeric type.name: A name for the operation (optional).
Returns:
x / y rounded down.
Raises:
TypeError: If the inputs are complex.
tf.RaggedTensor.__ge__
__ge__(
x,
y,
name=None
)
Returns the truth value of (x >= y) element-wise.
NOTE: math.greater_equal supports broadcasting. More about broadcasting
here
Args:
x: ATensor. Must be one of the following types:float32,float64,int32,uint8,int16,int8,int64,bfloat16,uint16,half,uint32,uint64.y: ATensor. Must have the same type asx.name: A name for the operation (optional).
Returns:
A Tensor of type bool.
tf.RaggedTensor.__getitem__
__getitem__(key)
Returns the specified piece of this RaggedTensor.
Supports multidimensional indexing and slicing, with one restriction: indexing into a ragged inner dimension is not allowed. This case is problematic because the indicated value may exist in some rows but not others. In such cases, it's not obvious whether we should (1) report an IndexError; (2) use a default value; or (3) skip that value and return a tensor with fewer rows than we started with. Following the guiding principles of Python ("In the face of ambiguity, refuse the temptation to guess"), we simply disallow this operation.
Any dimensions added by array_ops.newaxis will be ragged if the following
dimension is ragged.
Args:
self: The RaggedTensor to slice.key: Indicates which piece of the RaggedTensor to return, using standard Python semantics (e.g., negative values index from the end).keymay have any of the following types:intconstant- Scalar integer
Tensor slicecontaining integer constants and/or scalar integerTensorsEllipsistf.newaxistuplecontaining any of the above (for multidimentional indexing)
Returns:
A Tensor or RaggedTensor object. Values that include at least one
ragged dimension are returned as RaggedTensor. Values that include no
ragged dimensions are returned as Tensor. See above for examples of
expressions that return Tensors vs RaggedTensors.
Raises:
ValueError: Ifkeyis out of bounds.ValueError: Ifkeyis not supported.TypeError: If the indices inkeyhave an unsupported type.
Examples:
>>> # A 2-D ragged tensor with 1 ragged dimension. >>> rt = ragged.constant([['a', 'b', 'c'], ['d', 'e'], ['f'], ['g']]) >>> rt[0].eval().tolist() # First row (1-D `Tensor`) ['a', 'b', 'c'] >>> rt[:3].eval().tolist() # First three rows (2-D RaggedTensor) [['a', 'b', 'c'], ['d', 'e'], '[f'], [g']] >>> rt[3, 0].eval().tolist() # 1st element of 4th row (scalar) 'g' >>> # A 3-D ragged tensor with 2 ragged dimensions. >>> rt = ragged.constant([[[1, 2, 3], [4]], ... [[5], [], [6]], ... [[7]], ... [[8, 9], [10]]]) >>> rt[1].eval().tolist() # Second row (2-D RaggedTensor) [[5], [], [6]] >>> rt[3, 0].eval().tolist() # First element of fourth row (1-D Tensor) [8, 9] >>> rt[:, 1:3].eval().tolist() # Items 1-3 of each row (3-D RaggedTensor) [[[4]], [[], [6]], [], [[10]]] >>> rt[:, -1:].eval().tolist() # Last item of each row (3-D RaggedTensor) [[[4]], [[6]], [[7]], [[10]]]
tf.RaggedTensor.__gt__
__gt__(
x,
y,
name=None
)
Returns the truth value of (x > y) element-wise.
NOTE: math.greater supports broadcasting. More about broadcasting
here
Args:
x: ATensor. Must be one of the following types:float32,float64,int32,uint8,int16,int8,int64,bfloat16,uint16,half,uint32,uint64.y: ATensor. Must have the same type asx.name: A name for the operation (optional).
Returns:
A Tensor of type bool.
tf.RaggedTensor.__invert__
__invert__(
x,
name=None
)
Returns the truth value of NOT x element-wise.
Args:
x: ATensorof typebool.name: A name for the operation (optional).
Returns:
A Tensor of type bool.
tf.RaggedTensor.__le__
__le__(
x,
y,
name=None
)
Returns the truth value of (x <= y) element-wise.
NOTE: math.less_equal supports broadcasting. More about broadcasting
here
Args:
x: ATensor. Must be one of the following types:float32,float64,int32,uint8,int16,int8,int64,bfloat16,uint16,half,uint32,uint64.y: ATensor. Must have the same type asx.name: A name for the operation (optional).
Returns:
A Tensor of type bool.
tf.RaggedTensor.__lt__
__lt__(
x,
y,
name=None
)
Returns the truth value of (x < y) element-wise.
NOTE: math.less supports broadcasting. More about broadcasting
here
Args:
x: ATensor. Must be one of the following types:float32,float64,int32,uint8,int16,int8,int64,bfloat16,uint16,half,uint32,uint64.y: ATensor. Must have the same type asx.name: A name for the operation (optional).
Returns:
A Tensor of type bool.
tf.RaggedTensor.__mod__
__mod__(
x,
y,
name=None
)
Returns element-wise remainder of division. When x < 0 xor y < 0 is
true, this follows Python semantics in that the result here is consistent
with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.
NOTE: floormod supports broadcasting. More about broadcasting
here
Args:
x: ATensor. Must be one of the following types:int32,int64,bfloat16,half,float32,float64.y: ATensor. Must have the same type asx.name: A name for the operation (optional).
Returns:
A Tensor. Has the same type as x.
tf.RaggedTensor.__mul__
__mul__(
x,
y,
name=None
)
Returns x * y element-wise.
NOTE: <a href="../tf/math/multiply"><code>tf.multiply</code></a> supports broadcasting. More about broadcasting
here
Args:
x: ATensor. Must be one of the following types:bfloat16,half,float32,float64,uint8,int8,uint16,int16,int32,int64,complex64,complex128.y: ATensor. Must have the same type asx.name: A name for the operation (optional).
Returns:
A Tensor. Has the same type as x.
tf.RaggedTensor.__neg__
__neg__(
x,
name=None
)
Computes numerical negative value element-wise.
I.e., \(y = -x\).
Args:
x: ATensor. Must be one of the following types:bfloat16,half,float32,float64,int32,int64,complex64,complex128.name: A name for the operation (optional).
Returns:
A Tensor. Has the same type as x.
If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.negative(x.values, ...), x.dense_shape)
tf.RaggedTensor.__nonzero__
__nonzero__(_)
Dummy method to prevent a RaggedTensor from being used as a Python bool.
tf.RaggedTensor.__or__
__or__(
x,
y,
name=None
)
Returns the truth value of x OR y element-wise.
NOTE: math.logical_or supports broadcasting. More about broadcasting
here
Args:
x: ATensorof typebool.y: ATensorof typebool.name: A name for the operation (optional).
Returns:
A Tensor of type bool.
tf.RaggedTensor.__pow__
__pow__(
x,
y,
name=None
)
Computes the power of one value to another.
Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:
x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y) # [[256, 65536], [9, 27]]
Args:
x: ATensorof typefloat16,float32,float64,int32,int64,complex64, orcomplex128.y: ATensorof typefloat16,float32,float64,int32,int64,complex64, orcomplex128.name: A name for the operation (optional).
Returns:
A Tensor.
tf.RaggedTensor.__radd__
__radd__(
x,
y,
name=None
)
Returns x + y element-wise.
NOTE: math.add supports broadcasting. AddN does not. More about broadcasting
here
Args:
x: ATensor. Must be one of the following types:bfloat16,half,float32,float64,uint8,int8,int16,int32,int64,complex64,complex128,string.y: ATensor. Must have the same type asx.name: A name for the operation (optional).
Returns:
A Tensor. Has the same type as x.
tf.RaggedTensor.__rand__
__rand__(
x,
y,
name=None
)
Returns the truth value of x AND y element-wise.
NOTE: math.logical_and supports broadcasting. More about broadcasting
here
Args:
x: ATensorof typebool.y: ATensorof typebool.name: A name for the operation (optional).
Returns:
A Tensor of type bool.
tf.RaggedTensor.__rdiv__
__rdiv__(
x,
y,
name=None
)
Divides x / y elementwise (using Python 2 division operator semantics). (deprecated)
NOTE: Prefer using the Tensor division operator or tf.divide which obey Python division operator semantics.
This function divides x and y, forcing Python 2.7 semantics. That is,
if one of x or y is a float, then the result will be a float.
Otherwise, the output will be an integer type. Flooring semantics are used
for integer division.
Args:
x:Tensornumerator of real numeric type.y:Tensordenominator of real numeric type.name: A name for the operation (optional).
Returns:
x / y returns the quotient of x and y.
tf.RaggedTensor.__rfloordiv__
__rfloordiv__(
x,
y,
name=None
)
Divides x / y elementwise, rounding toward the most negative integer.
The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.
x and y must have the same type, and the result will have the same type
as well.
Args:
x:Tensornumerator of real numeric type.y:Tensordenominator of real numeric type.name: A name for the operation (optional).
Returns:
x / y rounded down.
Raises:
TypeError: If the inputs are complex.
tf.RaggedTensor.__rmod__
__rmod__(
x,
y,
name=None
)
Returns element-wise remainder of division. When x < 0 xor y < 0 is
true, this follows Python semantics in that the result here is consistent
with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.
NOTE: floormod supports broadcasting. More about broadcasting
here
Args:
x: ATensor. Must be one of the following types:int32,int64,bfloat16,half,float32,float64.y: ATensor. Must have the same type asx.name: A name for the operation (optional).
Returns:
A Tensor. Has the same type as x.
tf.RaggedTensor.__rmul__
__rmul__(
x,
y,
name=None
)
Returns x * y element-wise.
NOTE: <a href="../tf/math/multiply"><code>tf.multiply</code></a> supports broadcasting. More about broadcasting
here
Args:
x: ATensor. Must be one of the following types:bfloat16,half,float32,float64,uint8,int8,uint16,int16,int32,int64,complex64,complex128.y: ATensor. Must have the same type asx.name: A name for the operation (optional).
Returns:
A Tensor. Has the same type as x.
tf.RaggedTensor.__ror__
__ror__(
x,
y,
name=None
)
Returns the truth value of x OR y element-wise.
NOTE: math.logical_or supports broadcasting. More about broadcasting
here
Args:
x: ATensorof typebool.y: ATensorof typebool.name: A name for the operation (optional).
Returns:
A Tensor of type bool.
tf.RaggedTensor.__rpow__
__rpow__(
x,
y,
name=None
)
Computes the power of one value to another.
Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:
x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y) # [[256, 65536], [9, 27]]
Args:
x: ATensorof typefloat16,float32,float64,int32,int64,complex64, orcomplex128.y: ATensorof typefloat16,float32,float64,int32,int64,complex64, orcomplex128.name: A name for the operation (optional).
Returns:
A Tensor.
tf.RaggedTensor.__rsub__
__rsub__(
x,
y,
name=None
)
Returns x - y element-wise.
NOTE: Subtract supports broadcasting. More about broadcasting
here
Args:
x: ATensor. Must be one of the following types:bfloat16,half,float32,float64,uint8,int8,uint16,int16,int32,int64,complex64,complex128.y: ATensor. Must have the same type asx.name: A name for the operation (optional).
Returns:
A Tensor. Has the same type as x.
tf.RaggedTensor.__rtruediv__
__rtruediv__(
x,
y,
name=None
)
Divides x / y elementwise (using Python 3 division operator semantics).
NOTE: Prefer using the Tensor operator or tf.divide which obey Python division operator semantics.
This function forces Python 3 division operator semantics where all integer
arguments are cast to floating types first. This op is generated by normal
x / y division in Python 3 and in Python 2.7 with
from __future__ import division. If you want integer division that rounds
down, use x // y or tf.math.floordiv.
x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).
Args:
x:Tensornumerator of numeric type.y:Tensordenominator of numeric type.name: A name for the operation (optional).
Returns:
x / y evaluated in floating point.
Raises:
TypeError: Ifxandyhave different dtypes.
tf.RaggedTensor.__rxor__
__rxor__(
x,
y,
name='LogicalXor'
)
x ^ y = (x | y) & ~(x & y).
tf.RaggedTensor.__sub__
__sub__(
x,
y,
name=None
)
Returns x - y element-wise.
NOTE: Subtract supports broadcasting. More about broadcasting
here
Args:
x: ATensor. Must be one of the following types:bfloat16,half,float32,float64,uint8,int8,uint16,int16,int32,int64,complex64,complex128.y: ATensor. Must have the same type asx.name: A name for the operation (optional).
Returns:
A Tensor. Has the same type as x.
tf.RaggedTensor.__truediv__
__truediv__(
x,
y,
name=None
)
Divides x / y elementwise (using Python 3 division operator semantics).
NOTE: Prefer using the Tensor operator or tf.divide which obey Python division operator semantics.
This function forces Python 3 division operator semantics where all integer
arguments are cast to floating types first. This op is generated by normal
x / y division in Python 3 and in Python 2.7 with
from __future__ import division. If you want integer division that rounds
down, use x // y or tf.math.floordiv.
x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).
Args:
x:Tensornumerator of numeric type.y:Tensordenominator of numeric type.name: A name for the operation (optional).
Returns:
x / y evaluated in floating point.
Raises:
TypeError: Ifxandyhave different dtypes.
tf.RaggedTensor.__xor__
__xor__(
x,
y,
name='LogicalXor'
)
x ^ y = (x | y) & ~(x & y).
tf.RaggedTensor.bounding_shape
bounding_shape(
axis=None,
name=None
)
Returns the tight bounding box shape for this RaggedTensor.
Args:
axis: An integer scalar or vector indicating which axes to return the bounding box for. If not specified, then the full bounding box is returned.name: A name prefix for the returned tensor (optional).
Returns:
An int64 Tensor. If axis is not specified, then output
is a vector with output.shape=[self.shape.ndims]. If axis is a
scalar, then the output is a scalar. If axis is a vector, then
output is a vector, where output[i] is the bounding size for
dimension axis[i].
Example:
>>> rt = ragged.constant([[1, 2, 3, 4], [5], [], [6, 7, 8, 9], [10]]) >>> rt.bounding_shape() [5, 4]
tf.RaggedTensor.from_nested_row_lengths
@classmethod
from_nested_row_lengths(
cls,
flat_values,
nested_row_lengths,
name=None
)
Creates a RaggedTensor from a nested list of row_lengths tensors.
Equivalent to:
result = flat_values
for row_lengths in reversed(nested_row_lengths):
result = from_row_lengths(result, row_lengths)
Args:
flat_values: A potentially ragged tensor.nested_row_lengths: A list of 1-D int64 tensors. Theith tensor is used as therow_lengthsfor theith ragged dimension.name: A name prefix for the RaggedTensor (optional).
Returns:
A RaggedTensor (or flat_values if nested_row_lengths is empty).
tf.RaggedTensor.from_nested_row_splits
@classmethod
from_nested_row_splits(
cls,
flat_values,
nested_row_splits,
name=None
)
Creates a RaggedTensor from a nested list of row_splits tensors.
Equivalent to:
result = flat_values
for row_splits in reversed(nested_row_splits):
result = from_row_splits(result, row_splits)
Args:
flat_values: A potentially ragged tensor.nested_row_splits: A list of 1-D int64 tensors. Theith tensor is used as therow_splitsfor theith ragged dimension.name: A name prefix for the RaggedTensor (optional).
Returns:
A RaggedTensor (or flat_values if nested_row_splits is empty).
tf.RaggedTensor.from_nested_value_rowids
@classmethod
from_nested_value_rowids(
cls,
flat_values,
nested_value_rowids,
nested_nrows=None,
name=None
)
Creates a RaggedTensor from a nested list of value_rowids tensors.
Equivalent to:
result = flat_values
for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):
result = from_value_rowids(result, rowids, nrows)
Args:
flat_values: A potentially ragged tensor.nested_value_rowids: A list of 1-D int64 tensors. Theith tensor is used as thevalue_rowidsfor theith ragged dimension.nested_nrows: A list of int64 scalars. Theith scalar is used as thenrowsfor theith ragged dimension.name: A name prefix for the RaggedTensor (optional).
Returns:
A RaggedTensor (or flat_values if nested_value_rowids is empty).
Raises:
ValueError: Iflen(nested_values_rowids) != len(nested_nrows).
tf.RaggedTensor.from_row_lengths
@classmethod
from_row_lengths(
cls,
values,
row_lengths,
name=None
)
Creates a RaggedTensor with rows partitioned by row_lengths.
The returned RaggedTensor corresponds with the python list defined by:
result = [[values.pop(0) for i in range(length)]
for length in row_lengths]
Args:
values: A potentially ragged tensor with shape[nvals, ...].row_lengths: A 1-D int64 tensor with shape[nrows]. Must be nonnegative.sum(row_lengths)must benvals.name: A name prefix for the RaggedTensor (optional).
Returns:
A RaggedTensor. result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.
Example:
>>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) <tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []])>
tf.RaggedTensor.from_row_limits
@classmethod
from_row_limits(
cls,
values,
row_limits,
name=None
)
Creates a RaggedTensor with rows partitioned by row_limits.
Equivalent to: from_row_splits(values, concat([0, row_limits])).
Args:
values: A potentially ragged tensor with shape[nvals, ...].row_limits: A 1-D int64 tensor with shape[nrows]. Must be sorted in ascending order. Ifnrows>0, thenrow_limits[-1]must benvals.name: A name prefix for the RaggedTensor (optional).
Returns:
A RaggedTensor. result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.
Example:
>>> print(tf.RaggedTensor.from_row_limits( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_limits=[4, 4, 7, 8, 8])) <tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>
tf.RaggedTensor.from_row_splits
@classmethod
from_row_splits(
cls,
values,
row_splits,
name=None
)
Creates a RaggedTensor with rows partitioned by row_splits.
The returned RaggedTensor corresponds with the python list defined by:
result = [values[row_splits[i]:row_splits[i + 1]]
for i in range(len(row_splits) - 1)]
Args:
values: A potentially ragged tensor with shape[nvals, ...].row_splits: A 1-D int64 tensor with shape[nrows+1]. Must not be empty, and must be sorted in ascending order.row_splits[0]must be zero androw_splits[-1]must benvals.name: A name prefix for the RaggedTensor (optional).
Returns:
A RaggedTensor. result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.
Raises:
ValueError: Ifrow_splitsis an empty list.
Example:
>>> print(tf.RaggedTensor.from_row_splits( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_splits=[0, 4, 4, 7, 8, 8])) <tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>
tf.RaggedTensor.from_row_starts
@classmethod
from_row_starts(
cls,
values,
row_starts,
name=None
)
Creates a RaggedTensor with rows partitioned by row_starts.
Equivalent to: from_row_splits(values, concat([row_starts, nvals])).
Args:
values: A potentially ragged tensor with shape[nvals, ...].row_starts: A 1-D int64 tensor with shape[nrows]. Must be nonnegative and sorted in ascending order. Ifnrows>0, thenrow_starts[0]must be zero.name: A name prefix for the RaggedTensor (optional).
Returns:
A RaggedTensor. result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.
Example:
>>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) <tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>
tf.RaggedTensor.from_sparse
@classmethod
from_sparse(
cls,
st_input,
name=None
)
Converts a 2D tf.SparseTensor to a RaggedTensor.
Each row of the output RaggedTensor will contain the explicit values
from the same row in st_input. st_input must be ragged-right. If not
it is not ragged-right, then an error will be generated.
Example:
>>> st = SparseTensor(indices=[[0, 1], [0, 2], [0, 3], [1, 0], [3, 0]],
... values=[1, 2, 3, 4, 5],
... dense_shape=[4, 3])
>>> rt.RaggedTensor.from_sparse(st).eval().tolist()
[[1, 2, 3], [4], [], [5]]
Currently, only two-dimensional SparseTensors are supported.
Args:
st_input: The sparse tensor to convert. Must have rank 2.name: A name prefix for the returned tensors (optional).
Returns:
A RaggedTensor with the same values as st_input.
output.ragged_rank = rank(st_input) - 1.
output.shape = [st_input.dense_shape[0], None].
Raises:
ValueError: If the number of dimensions inst_inputis not known statically, or is not two.
tf.RaggedTensor.from_tensor
@classmethod
from_tensor(
cls,
tensor,
lengths=None,
padding=None,
ragged_rank=1,
name=None
)
Converts a tf.Tensor into a RaggedTensor.
The set of absent/default values may be specified using a vector of lengths
or a padding value (but not both). If lengths is specified, then the
output tensor will satisfy output[row] = tensor[row][:lengths[row]].
If padding is specified, then any row suffix consisting entirely of
padding will be excluded from the returned RaggedTensor. If neither
lengths nor padding is specified, then the returned RaggedTensor will
have no absent/default values.
Examples:
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
>>> tf.RaggedTensor.from_tensor(dt)
<tf.RaggedTensor [[5, 7, 0], [0, 3, 0], [6, 0, 0]]>
>>> tf.RaggedTensor.from_tensor(dt, lengths=[2, 0, 3])
<tf.RaggedTensor [[5, 7], [], [6, 0, 0]]>
>>> tf.RaggedTensor.from_tensor(dt, padding=0)
<tf.RaggedTensor [[5, 7], [0, 3], [6]]>
Args:
tensor: TheTensorto convert. Must have rankragged_rank + 1or higher.lengths: An optional set of row lengths, specified using a 1-D integerTensorwhose length is equal totensor.shape[0](the number of rows intensor). If specified, thenoutput[row]will containtensor[row][:lengths[row]]. Negative lengths are treated as zero.padding: An optional padding value. If specified, then any row suffix consisting entirely ofpaddingwill be excluded from the returned RaggedTensor.paddingis aTensorwith the same dtype astensorand withshape=tensor.shape[ragged_rank + 1:].ragged_rank: Integer specifying the ragged rank for the returnedRaggedTensor. Must be greater than zero.name: A name prefix for the returned tensors (optional).
Returns:
A RaggedTensor with the specified ragged_rank. The shape of the
returned ragged tensor is compatible with the shape of tensor.
Raises:
ValueError: If bothlengthsandpaddingare specified.
tf.RaggedTensor.from_value_rowids
@classmethod
from_value_rowids(
cls,
values,
value_rowids,
nrows=None,
name=None
)
Creates a RaggedTensor with rows partitioned by value_rowids.
The returned RaggedTensor corresponds with the python list defined by:
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
for row in range(nrows)]
Args:
values: A potentially ragged tensor with shape[nvals, ...].value_rowids: A 1-D int64 tensor with shape[nvals], which corresponds one-to-one withvalues, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.nrows: An int64 scalar specifying the number of rows. This should be specified if theRaggedTensormay containing empty training rows. Must be greater thanvalue_rowids[-1](or zero ifvalue_rowidsis empty). Defaults tovalue_rowids[-1](or zero ifvalue_rowidsis empty).name: A name prefix for the RaggedTensor (optional).
Returns:
A RaggedTensor. result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.
Raises:
ValueError: Ifnrowsis incompatible withvalue_rowids.
Example:
>>> print(tf.RaggedTensor.from_value_rowids( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... value_rowids=[0, 0, 0, 0, 2, 2, 2, 3], ... nrows=5)) <tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>
tf.RaggedTensor.nested_row_lengths
nested_row_lengths(name=None)
Returns a tuple containing the row_lengths for all ragged dimensions.
rtnested_row_lengths() is a tuple containing the row_lengths tensors for
all ragged dimensions in rt, ordered from outermost to innermost.
Args:
name: A name prefix for the returned tensors (optional).
Returns:
A tuple of 1-D int64 Tensors. The length of the tuple is equal to
self.ragged_rank.
tf.RaggedTensor.nrows
nrows(
out_type=tf.dtypes.int64,
name=None
)
Returns the number of rows in this ragged tensor.
I.e., the size of the outermost dimension of the tensor.
Args:
out_type:dtypefor the returned tensor.name: A name prefix for the returned tensor (optional).
Returns:
A scalar Tensor with dtype out_type.
Example:
>>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.nrows() # rt has 5 rows. 5
tf.RaggedTensor.row_lengths
row_lengths(
axis=1,
name=None
)
Returns the lengths of the rows in this ragged tensor.
rt.row_lengths()[i] indicates the number of values in the
ith row of rt.
Args:
axis: An integer constant indicating the axis whose row lengths should be returned.name: A name prefix for the returned tensor (optional).
Returns:
A potentially ragged Tensor of int64 with shape self.shape[:axis].
Raises:
ValueError: Ifaxisis out of bounds.
Example:
>>> rt = ragged.constant([[[3, 1, 4], [1]], [], [[5, 9], [2]], [[6]], []]) >>> rt.row_lengths(rt) # lengths of rows in rt tf.Tensor([2, 0, 2, 1, 0]) >>> rt.row_lengths(axis=2) # lengths of axis=2 rows. <tf.RaggedTensor [[3, 1], [], [2, 1], [1], []]>
tf.RaggedTensor.row_limits
row_limits(name=None)
Returns the limit indices for rows in this ragged tensor.
These indices specify where the values for each row end in
self.values. rt.row_limits(self) is equal to rt.row_splits[:-1].
Args:
name: A name prefix for the returned tensor (optional).
Returns:
A 1-D Tensor of int64 with shape [nrows].
The returned tensor is nonnegative, and is sorted in ascending order.
Example:
>>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.values tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6]) >>> rt.row_limits() # indices of row limits in rt.values tf.Tensor([4, 4, 7, 8, 8])
tf.RaggedTensor.row_starts
row_starts(name=None)
Returns the start indices for rows in this ragged tensor.
These indices specify where the values for each row begin in
self.values. rt.row_starts() is equal to rt.row_splits[:-1].
Args:
name: A name prefix for the returned tensor (optional).
Returns:
A 1-D Tensor of int64 with shape [nrows].
The returned tensor is nonnegative, and is sorted in ascending order.
Example:
>>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.values tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6]) >>> rt.row_starts() # indices of row starts in rt.values tf.Tensor([0, 4, 4, 7, 8])
tf.RaggedTensor.to_list
to_list()
Returns a nested Python list with the values for this RaggedTensor.
Requires that rt was constructed in eager execution mode.
Returns:
A nested Python list.
tf.RaggedTensor.to_sparse
to_sparse(name=None)
Converts this RaggedTensor into a tf.SparseTensor.
Example:
>>> rt = ragged.constant([[1, 2, 3], [4], [], [5, 6]])
>>> rt.to_sparse().eval()
SparseTensorValue(indices=[[0, 0], [0, 1], [0, 2], [1, 0], [3, 0], [3, 1]],
values=[1, 2, 3, 4, 5, 6],
dense_shape=[4, 3])
Args:
name: A name prefix for the returned tensors (optional).
Returns:
A SparseTensor with the same values as self.
tf.RaggedTensor.to_tensor
to_tensor(
default_value=None,
name=None
)
Converts this RaggedTensor into a tf.Tensor.
Example:
>>> rt = ragged.constant([[9, 8, 7], [], [6, 5], [4]])
>>> print rt.to_tensor()
[[9 8 7]
[0 0 0]
[6 5 0]
[4 0 0]]
Args:
default_value: Value to set for indices not specified inself. Defaults to zero.default_valuemust be broadcastable toself.shape[self.ragged_rank + 1:].name: A name prefix for the returned tensors (optional).
Returns:
A Tensor with shape ragged.bounding_shape(self) and the
values specified by the non-empty values in self. Empty values are
assigned default_value.
tf.RaggedTensor.value_rowids
value_rowids(name=None)
Returns the row indices for the values in this ragged tensor.
rt.value_rowids() corresponds one-to-one with the outermost dimension of
rt.values, and specifies the row containing each value. In particular,
the row rt[row] consists of the values rt.values[j] where
rt.value_rowids()[j] == row.
Args:
name: A name prefix for the returned tensor (optional).
Returns:
A 1-D int64 Tensor with shape self.values.shape[:1].
The returned tensor is nonnegative, and is sorted in ascending order.
Example:
>>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.values tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6]) >>> rt.value_rowids() tf.Tensor([0, 0, 0, 0, 2, 2, 2, 3]) # corresponds 1:1 with rt.values
tf.RaggedTensor.with_flat_values
with_flat_values(new_values)
Returns a copy of self with flat_values replaced by new_value.
Preserves cached row-partitioning tensors such as self.cached_nrows and
self.cached_value_rowids if they have values.
Args:
new_values: Potentially ragged tensor that should replaceself.flat_values. Must haverank > 0, and must have the same number of rows asself.flat_values.
Returns:
A RaggedTensor.
result.rank = self.ragged_rank + new_values.rank.
result.ragged_rank = self.ragged_rank + new_values.ragged_rank.
tf.RaggedTensor.with_values
with_values(new_values)
Returns a copy of self with values replaced by new_value.
Preserves cached row-partitioning tensors such as self.cached_nrows and
self.cached_value_rowids if they have values.
Args:
new_values: Potentially ragged tensor to use as thevaluesfor the returnedRaggedTensor. Must haverank > 0, and must have the same number of rows asself.values.
Returns:
A RaggedTensor. result.rank = 1 + new_values.rank.
result.ragged_rank = 1 + new_values.ragged_rank