Defined in tensorflow/contrib/__init__.py
.
contrib module containing volatile or experimental code.
Modules
autograph
module: This is the legacy module for AutoGraph, kept for backward compatibility.
batching
module: Ops and modules related to batch.
bayesflow
module: Ops for representing Bayesian computation.
bigtable
module: Cloud Bigtable Client for TensorFlow.
checkpoint
module: Tools for working with object-based checkpoints.
cloud
module: Module for cloud ops.
cluster_resolver
module: Standard imports for Cluster Resolvers.
coder
module: Data compression ops.
compiler
module: A module for controlling the Tensorflow/XLA JIT compiler.
constrained_optimization
module: A library for performing constrained optimization in TensorFlow.
copy_graph
module: Functions to copy elements between graphs.
crf
module: Linear-chain CRF layer.
cudnn_rnn
module: Ops for fused Cudnn RNN models.
data
module: Experimental API for building input pipelines.
decision_trees
module: Shared representations for tree-based models in tensorflow.
deprecated
module: Non-core alias for the deprecated tf.X_summary ops.
distribute
module: A distributed computation library for TF.
distributions
module: Classes representing statistical distributions and ops for working with them.
eager
module: TensorFlow Eager execution prototype.
estimator
module: estimator python module.
factorization
module: Ops and modules related to factorization.
feature_column
module: Experimental utilities for tf.feature_column.
ffmpeg
module: Working with audio using FFmpeg.
framework
module: Framework utilities.
gan
module: TFGAN is a lightweight library for training and evaluating GANs.
graph_editor
module: TensorFlow Graph Editor.
grid_rnn
module: GridRNN cells
image
module: Ops for image manipulation.
input_pipeline
module: Ops and modules related to input_pipeline.
integrate
module: Integration and ODE solvers.
keras
module: Implementation of the Keras API meant to be a high-level API for TensorFlow.
kernel_methods
module: Ops and estimators that enable explicit kernel methods in TensorFlow.
labeled_tensor
module: Labels for TensorFlow.
layers
module: Ops for building neural network layers, regularizers, summaries, etc.
learn
module: High level API for learning (DEPRECATED).
legacy_seq2seq
module: Deprecated library for creating sequence-to-sequence models in TensorFlow.
linear_optimizer
module: Ops for training linear models.
lite
module: Public API for tf.lite namespace.
lookup
module: Ops for lookup operations.
losses
module: Ops for building neural network losses.
memory_stats
module: Ops for memory statistics.
meta_graph_transform
module: Utility for applying the Graph Transform tool to a MetaGraphDef.
metrics
module: Ops for evaluation metrics and summary statistics.
mixed_precision
module: Library for mixed precision training.
model_pruning
module: Model pruning implementation in tensorflow.
nn
module: Module for variants of ops in tf.nn.
opt
module: A module containing optimization routines.
optimizer_v2
module: Distribution-aware version of Optimizer.
periodic_resample
module: Custom op used by periodic_resample.
predictor
module: Modules for Predictor
s.
proto
module: Ops and modules related to proto.
quantization
module: Ops for building quantized models.
quantize
module: Functions for rewriting graphs for quantized training.
receptive_field
module: Module that declares the functions in tf.contrib.receptive_field's API.
recurrent
module: Recurrent computations library.
reduce_slice_ops
module: reduce by slice
remote_fused_graph
module: Remote fused graph ops python library.
resampler
module: Ops and modules related to resampler.
rnn
module: RNN Cells and additional RNN operations.
rpc
module: Ops and modules related to RPC.
saved_model
module: SavedModel contrib support.
seq2seq
module: Ops for building neural network seq2seq decoders and losses.
session_bundle
module
signal
module: Signal processing operations.
slim
module: Slim is an interface to contrib functions, examples and models.
solvers
module: Ops for representing Bayesian computation.
sparsemax
module: Module that implements sparsemax and sparsemax loss, see [1].
specs
module: Init file, giving convenient access to all specs ops.
staging
module: contrib module containing StagingArea.
stat_summarizer
module: Exposes the Python wrapper for StatSummarizer utility class.
stateless
module: Stateless random ops which take seed as a tensor input.
summary
module: TensorFlow Summary API v2.
tensor_forest
module: Random forest implementation in tensorflow.
tensorboard
module: tensorboard module containing volatile or experimental code.
testing
module: Testing utilities.
tfprof
module: tfprof is a tool that profile various aspect of TensorFlow model.
timeseries
module: A time series library in TensorFlow (TFTS).
tpu
module: Ops related to Tensor Processing Units.
training
module: Training and input utilities.
util
module: Utilities for dealing with Tensors.