Class NumpyState
Inherits From: CheckpointableBase
Defined in tensorflow/contrib/checkpoint/python/python_state.py
.
A checkpointable object whose NumPy array attributes are saved/restored.
Example usage:
arrays = tf.contrib.checkpoint.NumpyState()
checkpoint = tf.train.Checkpoint(numpy_arrays=arrays)
arrays.x = numpy.zeros([3, 4])
save_path = checkpoint.save("/tmp/ckpt")
arrays.x[1, 1] = 4.
checkpoint.restore(save_path)
assert (arrays.x == numpy.zeros([3, 4])).all()
second_checkpoint = tf.train.Checkpoint(
numpy_arrays=tf.contrib.checkpoint.NumpyState())
# Attributes of NumpyState objects are created automatically by restore()
second_checkpoint.restore(save_path)
assert (second_checkpoint.numpy_arrays.x == numpy.zeros([3, 4])).all()
Note that NumpyState
objects re-create the attributes of the previously
saved object on restore()
. This is in contrast to TensorFlow variables, for
which a Variable
object must be created and assigned to an attribute.
This snippet works both when graph building and when executing eagerly. On
save, the NumPy array(s) are fed as strings to be saved in the checkpoint (via
a placeholder when graph building, or as a string constant when executing
eagerly). When restoring they skip the TensorFlow graph entirely, and so no
restore ops need be run. This means that restoration always happens eagerly,
rather than waiting for checkpoint.restore(...).run_restore_ops()
like
TensorFlow variables when graph building.
Methods
tf.contrib.checkpoint.NumpyState.__getattribute__
__getattribute__(name)
Un-wrap _NumpyWrapper
objects when accessing attributes.
tf.contrib.checkpoint.NumpyState.__setattr__
__setattr__(
name,
value
)
Automatically wrap NumPy arrays assigned to attributes.