Class UniqueNameTracker
Defined in tensorflow/contrib/checkpoint/python/containers.py
.
Adds dependencies on checkpointable objects with name hints.
Useful for creating dependencies with locally unique names.
Example usage:
class SlotManager(tf.contrib.checkpoint.Checkpointable):
def __init__(self):
# Create a dependency named "slotdeps" on the container.
self.slotdeps = tf.contrib.checkpoint.UniqueNameTracker()
slotdeps = self.slotdeps
slots = []
slots.append(slotdeps.track(tf.Variable(3.), "x")) # Named "x"
slots.append(slotdeps.track(tf.Variable(4.), "y"))
slots.append(slotdeps.track(tf.Variable(5.), "x")) # Named "x_1"
__init__
__init__()
Initialize self. See help(type(self)) for accurate signature.
Properties
layers
losses
Aggregate losses from any Layer
instances.
non_trainable_variables
non_trainable_weights
trainable_variables
trainable_weights
updates
Aggregate updates from any Layer
instances.
variables
weights
Methods
tf.contrib.checkpoint.UniqueNameTracker.__eq__
__eq__(other)
Return self==value.
tf.contrib.checkpoint.UniqueNameTracker.track
track(
checkpointable,
base_name
)
Add a dependency on checkpointable
.
Args:
checkpointable
: An object to add a checkpoint dependency on.base_name
: A name hint, which is uniquified to determine the dependency name.
Returns:
checkpointable
, for chaining.
Raises:
ValueError
: Ifcheckpointable
is not a checkpointable object.