Class SimpleClusterResolver
Inherits From: ClusterResolver
Aliases:
- Class
tf.contrib.cluster_resolver.SimpleClusterResolver
- Class
tf.contrib.cluster_resolver.python.training.SimpleClusterResolver
Defined in tensorflow/python/distribute/cluster_resolver/cluster_resolver.py
.
Simple implementation of ClusterResolver that accepts a ClusterSpec.
__init__
__init__(
cluster_spec,
master='',
task_type=None,
task_index=None,
environment='',
num_accelerators=0,
rpc_layer=None
)
Creates a SimpleClusterResolver from a ClusterSpec.
Properties
environment
Returns the current environment which TensorFlow is running in.
rpc_layer
task_index
task_type
Methods
tf.contrib.cluster_resolver.SimpleClusterResolver.cluster_spec
cluster_spec()
Returns the ClusterSpec passed into the constructor.
tf.contrib.cluster_resolver.SimpleClusterResolver.master
master(
task_type=None,
task_index=None,
rpc_layer=None
)
Returns the master address to use when creating a session.
Args:
task_type
: (Optional) The type of the TensorFlow task of the master.task_index
: (Optional) The index of the TensorFlow task of the master.rpc_layer
: (Optional) The RPC used by distributed TensorFlow.
Returns:
The name or URL of the session master.
If a task_type and task_index is given, this will override the master
string passed into the initialization function.
tf.contrib.cluster_resolver.SimpleClusterResolver.num_accelerators
num_accelerators(
task_type=None,
task_index=None,
accelerator_type='GPU',
config_proto=None
)
Returns the number of accelerator cores per worker.
The SimpleClusterResolver does not do automatic detection of accelerators, so a TensorFlow session will never be created, and thus all arguments are unused and we simply return whatever was passed in when this object was initialized.
Args:
task_type
: Unused.task_index
: Unused.accelerator_type
: Unused.config_proto
: Unused.