Class AdditiveExternalRegretOptimizer
Defined in tensorflow/contrib/constrained_optimization/python/external_regret_optimizer.py
.
A ConstrainedOptimizer
based on external-regret minimization.
This ConstrainedOptimizer
uses the given tf.train.Optimizer
s to jointly
minimize over the model parameters, and maximize over Lagrange multipliers,
with the latter maximization using additive updates and an algorithm that
minimizes external regret.
For more specifics, please refer to:
Cotter, Jiang and Sridharan. "Two-Player Games for Efficient Non-Convex Constrained Optimization". https://arxiv.org/abs/1804.06500
The formulation used by this optimizer--which is simply the usual Lagrangian
formulation--can be found in Definition 1, and is discussed in Section 3. It
is most similar to Algorithm 3 in Appendix C.3, with the two differences being
that it uses proxy constraints (if they're provided) in the update of the
model parameters, and uses tf.train.Optimizer
s, instead of SGD, for the
"inner" updates.
__init__
__init__(
optimizer,
constraint_optimizer=None,
maximum_multiplier_radius=None
)
Constructs a new AdditiveExternalRegretOptimizer
.
Args:
optimizer
: tf.train.Optimizer, used to optimize the objective and proxy_constraints portion of ConstrainedMinimizationProblem. If constraint_optimizer is not provided, this will also be used to optimize the Lagrange multipliers.constraint_optimizer
: optional tf.train.Optimizer, used to optimize the Lagrange multipliers.maximum_multiplier_radius
: float, an optional upper bound to impose on the sum of the Lagrange multipliers.
Returns:
A new AdditiveExternalRegretOptimizer
.
Raises:
ValueError
: If the maximum_multiplier_radius parameter is nonpositive.
Properties
constraint_optimizer
Returns the tf.train.Optimizer
used for the Lagrange multipliers.
optimizer
Returns the tf.train.Optimizer
used for optimization.
Methods
tf.contrib.constrained_optimization.AdditiveExternalRegretOptimizer.minimize
minimize(
minimization_problem,
unconstrained_steps=None,
global_step=None,
var_list=None,
gate_gradients=train_optimizer.Optimizer.GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
name=None,
grad_loss=None
)
Returns an Operation
for minimizing the constrained problem.
This method combines the functionality of minimize_unconstrained
and
minimize_constrained
. If global_step < unconstrained_steps, it will
perform an unconstrained update, and if global_step >= unconstrained_steps,
it will perform a constrained update.
The reason for this functionality is that it may be best to initialize the constrained optimizer with an approximate optimum of the unconstrained problem.
Args:
minimization_problem
: ConstrainedMinimizationProblem, the problem to optimize.unconstrained_steps
: int, number of steps for which we should perform unconstrained updates, before transitioning to constrained updates.global_step
: as intf.train.Optimizer
'sminimize
method.var_list
: as intf.train.Optimizer
'sminimize
method.gate_gradients
: as intf.train.Optimizer
'sminimize
method.aggregation_method
: as intf.train.Optimizer
'sminimize
method.colocate_gradients_with_ops
: as intf.train.Optimizer
'sminimize
method.name
: as intf.train.Optimizer
'sminimize
method.grad_loss
: as intf.train.Optimizer
'sminimize
method.
Returns:
Operation
, the train_op.
Raises:
ValueError
: If unconstrained_steps is provided, but global_step is not.
tf.contrib.constrained_optimization.AdditiveExternalRegretOptimizer.minimize_constrained
minimize_constrained(
minimization_problem,
global_step=None,
var_list=None,
gate_gradients=train_optimizer.Optimizer.GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
name=None,
grad_loss=None
)
Returns an Operation
for minimizing the constrained problem.
Unlike minimize_unconstrained
, this function attempts to find a solution
that minimizes the objective
portion of the minimization problem while
satisfying the constraints
portion.
Args:
minimization_problem
: ConstrainedMinimizationProblem, the problem to optimize.global_step
: as intf.train.Optimizer
'sminimize
method.var_list
: as intf.train.Optimizer
'sminimize
method.gate_gradients
: as intf.train.Optimizer
'sminimize
method.aggregation_method
: as intf.train.Optimizer
'sminimize
method.colocate_gradients_with_ops
: as intf.train.Optimizer
'sminimize
method.name
: as intf.train.Optimizer
'sminimize
method.grad_loss
: as intf.train.Optimizer
'sminimize
method.
Returns:
Operation
, the train_op.
tf.contrib.constrained_optimization.AdditiveExternalRegretOptimizer.minimize_unconstrained
minimize_unconstrained(
minimization_problem,
global_step=None,
var_list=None,
gate_gradients=train_optimizer.Optimizer.GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
name=None,
grad_loss=None
)
Returns an Operation
for minimizing the unconstrained problem.
Unlike minimize_constrained
, this function ignores the constraints
(and
proxy_constraints
) portion of the minimization problem entirely, and only
minimizes objective
.
Args:
minimization_problem
: ConstrainedMinimizationProblem, the problem to optimize.global_step
: as intf.train.Optimizer
'sminimize
method.var_list
: as intf.train.Optimizer
'sminimize
method.gate_gradients
: as intf.train.Optimizer
'sminimize
method.aggregation_method
: as intf.train.Optimizer
'sminimize
method.colocate_gradients_with_ops
: as intf.train.Optimizer
'sminimize
method.name
: as intf.train.Optimizer
'sminimize
method.grad_loss
: as intf.train.Optimizer
'sminimize
method.
Returns:
Operation
, the train_op.