Class CudnnGRU
Defined in tensorflow/contrib/cudnn_rnn/python/layers/cudnn_rnn.py
.
Cudnn implementation of the GRU layer.
__init__
__init__(
num_layers,
num_units,
input_mode=CUDNN_INPUT_LINEAR_MODE,
direction=CUDNN_RNN_UNIDIRECTION,
dropout=0.0,
seed=None,
dtype=tf.dtypes.float32,
kernel_initializer=None,
bias_initializer=None,
name=None
)
Creates a CudnnRNN model from model spec.
Args:
num_layers
: the number of layers for the RNN model.num_units
: the number of units within the RNN model.input_mode
: indicate whether there is a linear projection between the input and the actual computation before the first layer. It can be 'linear_input', 'skip_input' or 'auto_select'. 'linear_input' (default) always applies a linear projection of input onto RNN hidden state. (standard RNN behavior). 'skip_input' is only allowed when input_size == num_units; 'auto_select' implies 'skip_input' when input_size == num_units; otherwise, it implies 'linear_input'.direction
: the direction model that the model operates. Can be either 'unidirectional' or 'bidirectional'dropout
: dropout rate, a number between [0, 1]. Dropout is applied between each layer (no dropout is applied for a model with a single layer). When set to 0, dropout is disabled.seed
: the op seed used for initializing dropout. Seetf.set_random_seed
for behavior.dtype
: tf.float16, tf.float32 or tf.float64kernel_initializer
: starting value to initialize the weight.bias_initializer
: starting value to initialize the bias (default is all zeros).name
: VariableScope for the created subgraph; defaults to class name. This only serves the default scope if later no scope is specified when invoking call().
Raises:
ValueError
: if direction is invalid. Or dtype is not supported.
Properties
activity_regularizer
Optional regularizer function for the output of this layer.
canonical_bias_shapes
Shapes of Cudnn canonical bias tensors.
canonical_weight_shapes
Shapes of Cudnn canonical weight tensors.
direction
Returns unidirectional
or bidirectional
.
dtype
graph
input
Retrieves the input tensor(s) of a layer.
Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer.
Returns:
Input tensor or list of input tensors.
Raises:
AttributeError
: if the layer is connected to more than one incoming layers.
Raises:
RuntimeError
: If called in Eager mode.AttributeError
: If no inbound nodes are found.
input_mask
Retrieves the input mask tensor(s) of a layer.
Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer.
Returns:
Input mask tensor (potentially None) or list of input mask tensors.
Raises:
AttributeError
: if the layer is connected to more than one incoming layers.
input_mode
Input mode of first layer.
Indicates whether there is a linear projection between the input and the actual computation before the first layer. It can be * 'linear_input': (default) always applies a linear projection of input onto RNN hidden state. (standard RNN behavior) * 'skip_input': 'skip_input' is only allowed when input_size == num_units. * 'auto_select'. implies 'skip_input' when input_size == num_units; otherwise, it implies 'linear_input'.
Returns:
'linear_input', 'skip_input' or 'auto_select'.
input_shape
Retrieves the input shape(s) of a layer.
Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer, or if all inputs have the same shape.
Returns:
Input shape, as an integer shape tuple (or list of shape tuples, one tuple per input tensor).
Raises:
AttributeError
: if the layer has no defined input_shape.RuntimeError
: if called in Eager mode.
input_size
losses
Losses which are associated with this Layer
.
Variable regularization tensors are created when this property is accessed,
so it is eager safe: accessing losses
under a tf.GradientTape
will
propagate gradients back to the corresponding variables.
Returns:
A list of tensors.
name
non_trainable_variables
non_trainable_weights
num_dirs
num_layers
num_units
output
Retrieves the output tensor(s) of a layer.
Only applicable if the layer has exactly one output, i.e. if it is connected to one incoming layer.
Returns:
Output tensor or list of output tensors.
Raises:
AttributeError
: if the layer is connected to more than one incoming layers.RuntimeError
: if called in Eager mode.
output_mask
Retrieves the output mask tensor(s) of a layer.
Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer.
Returns:
Output mask tensor (potentially None) or list of output mask tensors.
Raises:
AttributeError
: if the layer is connected to more than one incoming layers.
output_shape
Retrieves the output shape(s) of a layer.
Only applicable if the layer has one output, or if all outputs have the same shape.
Returns:
Output shape, as an integer shape tuple (or list of shape tuples, one tuple per output tensor).
Raises:
AttributeError
: if the layer has no defined output shape.RuntimeError
: if called in Eager mode.
rnn_mode
Type of RNN cell used.
Returns:
lstm
, gru
, rnn_relu
or rnn_tanh
.
saveable
scope_name
trainable_variables
trainable_weights
updates
variables
Returns the list of all layer variables/weights.
Alias of self.weights
.
Returns:
A list of variables.
weights
Returns the list of all layer variables/weights.
Returns:
A list of variables.
Methods
tf.contrib.cudnn_rnn.CudnnGRU.__call__
__call__(
inputs,
*args,
**kwargs
)
Wraps call
, applying pre- and post-processing steps.
Arguments:
inputs
: input tensor(s).*args
: additional positional arguments to be passed toself.call
.**kwargs
: additional keyword arguments to be passed toself.call
. Note: kwargscope
is reserved for use by the layer.
Returns:
Output tensor(s).
Raises:
ValueError
: if the layer'scall
method returns None (an invalid value).
tf.contrib.cudnn_rnn.CudnnGRU.__deepcopy__
__deepcopy__(memo)
tf.contrib.cudnn_rnn.CudnnGRU.__setattr__
__setattr__(
name,
value
)
Implement setattr(self, name, value).
tf.contrib.cudnn_rnn.CudnnGRU.apply
apply(
inputs,
*args,
**kwargs
)
Apply the layer on a input.
This is an alias of self.__call__
.
Arguments:
inputs
: Input tensor(s).*args
: additional positional arguments to be passed toself.call
.**kwargs
: additional keyword arguments to be passed toself.call
.
Returns:
Output tensor(s).
tf.contrib.cudnn_rnn.CudnnGRU.build
build(input_shape)
Create variables of the Cudnn RNN.
It can be called manually before __call__()
or automatically through
__call__()
. In the former case, subsequent __call__()
s will skip
creating variables.
Args:
input_shape
: network input tensor shape, a python list or a TensorShape object with 3 dimensions.
Raises:
ValueError
: if input_shape has wrong dimension or unknown 3rd dimension.
tf.contrib.cudnn_rnn.CudnnGRU.compute_mask
compute_mask(
inputs,
mask=None
)
Computes an output mask tensor.
Arguments:
inputs
: Tensor or list of tensors.mask
: Tensor or list of tensors.
Returns:
None or a tensor (or list of tensors, one per output tensor of the layer).
tf.contrib.cudnn_rnn.CudnnGRU.compute_output_shape
compute_output_shape(input_shape)
Computes the output shape of the layer.
Assumes that the layer will be built to match that input shape provided.
Arguments:
input_shape
: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer.
Returns:
An input shape tuple.
tf.contrib.cudnn_rnn.CudnnGRU.count_params
count_params()
Count the total number of scalars composing the weights.
Returns:
An integer count.
Raises:
ValueError
: if the layer isn't yet built (in which case its weights aren't yet defined).
tf.contrib.cudnn_rnn.CudnnGRU.from_config
from_config(
cls,
config
)
Creates a layer from its config.
This method is the reverse of get_config
,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights
).
Arguments:
config
: A Python dictionary, typically the output of get_config.
Returns:
A layer instance.
tf.contrib.cudnn_rnn.CudnnGRU.get_config
get_config()
Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.
The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network
(one layer of abstraction above).
Returns:
Python dictionary.
tf.contrib.cudnn_rnn.CudnnGRU.get_input_at
get_input_at(node_index)
Retrieves the input tensor(s) of a layer at a given node.
Arguments:
node_index
: Integer, index of the node from which to retrieve the attribute. E.g.node_index=0
will correspond to the first time the layer was called.
Returns:
A tensor (or list of tensors if the layer has multiple inputs).
Raises:
RuntimeError
: If called in Eager mode.
tf.contrib.cudnn_rnn.CudnnGRU.get_input_mask_at
get_input_mask_at(node_index)
Retrieves the input mask tensor(s) of a layer at a given node.
Arguments:
node_index
: Integer, index of the node from which to retrieve the attribute. E.g.node_index=0
will correspond to the first time the layer was called.
Returns:
A mask tensor (or list of tensors if the layer has multiple inputs).
tf.contrib.cudnn_rnn.CudnnGRU.get_input_shape_at
get_input_shape_at(node_index)
Retrieves the input shape(s) of a layer at a given node.
Arguments:
node_index
: Integer, index of the node from which to retrieve the attribute. E.g.node_index=0
will correspond to the first time the layer was called.
Returns:
A shape tuple (or list of shape tuples if the layer has multiple inputs).
Raises:
RuntimeError
: If called in Eager mode.
tf.contrib.cudnn_rnn.CudnnGRU.get_losses_for
get_losses_for(inputs)
Retrieves losses relevant to a specific set of inputs.
Arguments:
inputs
: Input tensor or list/tuple of input tensors.
Returns:
List of loss tensors of the layer that depend on inputs
.
Raises:
RuntimeError
: If called in Eager mode.
tf.contrib.cudnn_rnn.CudnnGRU.get_output_at
get_output_at(node_index)
Retrieves the output tensor(s) of a layer at a given node.
Arguments:
node_index
: Integer, index of the node from which to retrieve the attribute. E.g.node_index=0
will correspond to the first time the layer was called.
Returns:
A tensor (or list of tensors if the layer has multiple outputs).
Raises:
RuntimeError
: If called in Eager mode.
tf.contrib.cudnn_rnn.CudnnGRU.get_output_mask_at
get_output_mask_at(node_index)
Retrieves the output mask tensor(s) of a layer at a given node.
Arguments:
node_index
: Integer, index of the node from which to retrieve the attribute. E.g.node_index=0
will correspond to the first time the layer was called.
Returns:
A mask tensor (or list of tensors if the layer has multiple outputs).
tf.contrib.cudnn_rnn.CudnnGRU.get_output_shape_at
get_output_shape_at(node_index)
Retrieves the output shape(s) of a layer at a given node.
Arguments:
node_index
: Integer, index of the node from which to retrieve the attribute. E.g.node_index=0
will correspond to the first time the layer was called.
Returns:
A shape tuple (or list of shape tuples if the layer has multiple outputs).
Raises:
RuntimeError
: If called in Eager mode.
tf.contrib.cudnn_rnn.CudnnGRU.get_updates_for
get_updates_for(inputs)
Retrieves updates relevant to a specific set of inputs.
Arguments:
inputs
: Input tensor or list/tuple of input tensors.
Returns:
List of update ops of the layer that depend on inputs
.
Raises:
RuntimeError
: If called in Eager mode.
tf.contrib.cudnn_rnn.CudnnGRU.get_weights
get_weights()
Returns the current weights of the layer.
Returns:
Weights values as a list of numpy arrays.
tf.contrib.cudnn_rnn.CudnnGRU.set_weights
set_weights(weights)
Sets the weights of the layer, from Numpy arrays.
Arguments:
weights
: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output ofget_weights
).
Raises:
ValueError
: If the provided weights list does not match the layer's specifications.
tf.contrib.cudnn_rnn.CudnnGRU.state_shape
state_shape(batch_size)
Shape of the state of Cudnn RNN cells w/o. input_c.
Shape is a 1-element tuple, [num_layers * num_dirs, batch_size, num_units]
Args:
batch_size
: an int
Returns:
a tuple of python arrays.