Class RelaxedBernoulli
Inherits From: TransformedDistribution
Defined in tensorflow/contrib/distributions/python/ops/relaxed_bernoulli.py.
RelaxedBernoulli distribution with temperature and logits parameters.
The RelaxedBernoulli is a distribution over the unit interval (0,1), which
continuously approximates a Bernoulli. The degree of approximation is
controlled by a temperature: as the temperature goes to 0 the
RelaxedBernoulli becomes discrete with a distribution described by the
logits or probs parameters, as the temperature goes to infinity the
RelaxedBernoulli becomes the constant distribution that is identically 0.5.
The RelaxedBernoulli distribution is a reparameterized continuous distribution that is the binary special case of the RelaxedOneHotCategorical distribution (Maddison et al., 2016; Jang et al., 2016). For details on the binary special case see the appendix of Maddison et al. (2016) where it is referred to as BinConcrete. If you use this distribution, please cite both papers.
Some care needs to be taken for loss functions that depend on the
log-probability of RelaxedBernoullis, because computing log-probabilities of
the RelaxedBernoulli can suffer from underflow issues. In many case loss
functions such as these are invariant under invertible transformations of
the random variables. The KL divergence, found in the variational autoencoder
loss, is an example. Because RelaxedBernoullis are sampled by a Logistic
random variable followed by a tf.sigmoid op, one solution is to treat
the Logistic as the random variable and tf.sigmoid as downstream. The
KL divergences of two Logistics, which are always followed by a tf.sigmoid
op, is equivalent to evaluating KL divergences of RelaxedBernoulli samples.
See Maddison et al., 2016 for more details where this distribution is called
the BinConcrete.
An alternative approach is to evaluate Bernoulli log probability or KL directly on relaxed samples, as done in Jang et al., 2016. In this case, guarantees on the loss are usually violated. For instance, using a Bernoulli KL in a relaxed ELBO is no longer a lower bound on the log marginal probability of the observation. Thus care and early stopping are important.
Examples
Creates three continuous distributions, which approximate 3 Bernoullis with probabilities (0.1, 0.5, 0.4). Samples from these distributions will be in the unit interval (0,1).
temperature = 0.5
p = [0.1, 0.5, 0.4]
dist = RelaxedBernoulli(temperature, probs=p)
Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1).
temperature = 0.5
logits = [-2, 2, 0]
dist = RelaxedBernoulli(temperature, logits=logits)
Creates three continuous distributions, whose sigmoid approximate 3 Bernoullis with logits (-2, 2, 0).
temperature = 0.5
logits = [-2, 2, 0]
dist = Logistic(logits/temperature, 1./temperature)
samples = dist.sample()
sigmoid_samples = tf.sigmoid(samples)
# sigmoid_samples has the same distribution as samples from
# RelaxedBernoulli(temperature, logits=logits)
Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1). Because the temperature is very low, samples from these distributions are almost discrete, usually taking values very close to 0 or 1.
temperature = 1e-5
logits = [-2, 2, 0]
dist = RelaxedBernoulli(temperature, logits=logits)
Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1). Because the temperature is very high, samples from these distributions are usually close to the (0.5, 0.5, 0.5) vector.
temperature = 100
logits = [-2, 2, 0]
dist = RelaxedBernoulli(temperature, logits=logits)
Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. 2016.
Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax. 2016.
__init__
__init__(
temperature,
logits=None,
probs=None,
validate_args=False,
allow_nan_stats=True,
name='RelaxedBernoulli'
)
Construct RelaxedBernoulli distributions. (deprecated)
Args:
temperature: An 0-DTensor, representing the temperature of a set of RelaxedBernoulli distributions. The temperature should be positive.logits: An N-DTensorrepresenting the log-odds of a positive event. Each entry in theTensorparametrizes an independent RelaxedBernoulli distribution where the probability of an event is sigmoid(logits). Only one oflogitsorprobsshould be passed in.probs: An N-DTensorrepresenting the probability of a positive event. Each entry in theTensorparameterizes an independent Bernoulli distribution. Only one oflogitsorprobsshould be passed in.validate_args: Pythonbool, defaultFalse. WhenTruedistribution parameters are checked for validity despite possibly degrading runtime performance. WhenFalseinvalid inputs may silently render incorrect outputs.allow_nan_stats: Pythonbool, defaultTrue. WhenTrue, statistics (e.g., mean, mode, variance) use the value "NaN" to indicate the result is undefined. WhenFalse, an exception is raised if one or more of the statistic's batch members are undefined.name: Pythonstrname prefixed to Ops created by this class.
Raises:
ValueError: If bothprobsandlogitsare passed, or if neither.
Properties
allow_nan_stats
Python bool describing behavior when a stat is undefined.
Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.
Returns:
allow_nan_stats: Pythonbool.
batch_shape
Shape of a single sample from a single event index as a TensorShape.
May be partially defined or unknown.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Returns:
batch_shape:TensorShape, possibly unknown.
bijector
Function transforming x => y.
distribution
Base distribution, p(x).
dtype
The DType of Tensors handled by this Distribution.
event_shape
Shape of a single sample from a single batch as a TensorShape.
May be partially defined or unknown.
Returns:
event_shape:TensorShape, possibly unknown.
logits
Log-odds of 1.
name
Name prepended to all ops created by this Distribution.
parameters
Dictionary of parameters used to instantiate this Distribution.
probs
Probability of 1.
reparameterization_type
Describes how samples from the distribution are reparameterized.
Currently this is one of the static instances
distributions.FULLY_REPARAMETERIZED
or distributions.NOT_REPARAMETERIZED.
Returns:
An instance of ReparameterizationType.
temperature
Distribution parameter for the location.
validate_args
Python bool indicating possibly expensive checks are enabled.
Methods
tf.contrib.distributions.RelaxedBernoulli.batch_shape_tensor
batch_shape_tensor(name='batch_shape_tensor')
Shape of a single sample from a single event index as a 1-D Tensor.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Args:
name: name to give to the op
Returns:
batch_shape:Tensor.
tf.contrib.distributions.RelaxedBernoulli.cdf
cdf(
value,
name='cdf'
)
Cumulative distribution function.
Given random variable X, the cumulative distribution function cdf is:
cdf(x) := P[X <= x]
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
cdf: aTensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype.
tf.contrib.distributions.RelaxedBernoulli.copy
copy(**override_parameters_kwargs)
Creates a deep copy of the distribution.
Args:
**override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values.
Returns:
distribution: A new instance oftype(self)initialized from the union of self.parameters and override_parameters_kwargs, i.e.,dict(self.parameters, **override_parameters_kwargs).
tf.contrib.distributions.RelaxedBernoulli.covariance
covariance(name='covariance')
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k, vector-valued distribution, it is calculated
as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g.,
matrix-valued, Wishart), Covariance shall return a (batch of) matrices
under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov is a (batch of) k' x k' matrices,
0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function
mapping indices of this distribution's event dimensions to indices of a
length-k' vector.
Args:
name: Pythonstrprepended to names of ops created by this function.
Returns:
covariance: Floating-pointTensorwith shape[B1, ..., Bn, k', k']where the firstndimensions are batch coordinates andk' = reduce_prod(self.event_shape).
tf.contrib.distributions.RelaxedBernoulli.cross_entropy
cross_entropy(
other,
name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self) by P and the other distribution by
Q. Assuming P, Q are absolutely continuous with respect to
one another and permit densities p(x) dr(x) and q(x) dr(x), (Shanon)
cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F denotes the support of the random variable X ~ P.
Args:
other:tfp.distributions.Distributioninstance.name: Pythonstrprepended to names of ops created by this function.
Returns:
cross_entropy:self.dtypeTensorwith shape[B1, ..., Bn]representingndifferent calculations of (Shanon) cross entropy.
tf.contrib.distributions.RelaxedBernoulli.entropy
entropy(name='entropy')
Shannon entropy in nats.
tf.contrib.distributions.RelaxedBernoulli.event_shape_tensor
event_shape_tensor(name='event_shape_tensor')
Shape of a single sample from a single batch as a 1-D int32 Tensor.
Args:
name: name to give to the op
Returns:
event_shape:Tensor.
tf.contrib.distributions.RelaxedBernoulli.is_scalar_batch
is_scalar_batch(name='is_scalar_batch')
Indicates that batch_shape == [].
Args:
name: Pythonstrprepended to names of ops created by this function.
Returns:
is_scalar_batch:boolscalarTensor.
tf.contrib.distributions.RelaxedBernoulli.is_scalar_event
is_scalar_event(name='is_scalar_event')
Indicates that event_shape == [].
Args:
name: Pythonstrprepended to names of ops created by this function.
Returns:
is_scalar_event:boolscalarTensor.
tf.contrib.distributions.RelaxedBernoulli.kl_divergence
kl_divergence(
other,
name='kl_divergence'
)
Computes the Kullback--Leibler divergence.
Denote this distribution (self) by p and the other distribution by
q. Assuming p, q are absolutely continuous with respect to reference
measure r, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))]
= -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
= H[p, q] - H[p]
where F denotes the support of the random variable X ~ p, H[., .]
denotes (Shanon) cross entropy, and H[.] denotes (Shanon) entropy.
Args:
other:tfp.distributions.Distributioninstance.name: Pythonstrprepended to names of ops created by this function.
Returns:
kl_divergence:self.dtypeTensorwith shape[B1, ..., Bn]representingndifferent calculations of the Kullback-Leibler divergence.
tf.contrib.distributions.RelaxedBernoulli.log_cdf
log_cdf(
value,
name='log_cdf'
)
Log cumulative distribution function.
Given random variable X, the cumulative distribution function cdf is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
logcdf: aTensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype.
tf.contrib.distributions.RelaxedBernoulli.log_prob
log_prob(
value,
name='log_prob'
)
Log probability density/mass function.
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
log_prob: aTensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype.
tf.contrib.distributions.RelaxedBernoulli.log_survival_function
log_survival_function(
value,
name='log_survival_function'
)
Log survival function.
Given random variable X, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ]
= Log[ 1 - P[X <= x] ]
= Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.
tf.contrib.distributions.RelaxedBernoulli.mean
mean(name='mean')
Mean.
tf.contrib.distributions.RelaxedBernoulli.mode
mode(name='mode')
Mode.
tf.contrib.distributions.RelaxedBernoulli.param_shapes
param_shapes(
cls,
sample_shape,
name='DistributionParamShapes'
)
Shapes of parameters given the desired shape of a call to sample().
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution so that a particular shape is
returned for that instance's call to sample().
Subclasses should override class method _param_shapes.
Args:
sample_shape:Tensoror python list/tuple. Desired shape of a call tosample().name: name to prepend ops with.
Returns:
dict of parameter name to Tensor shapes.
tf.contrib.distributions.RelaxedBernoulli.param_static_shapes
param_static_shapes(
cls,
sample_shape
)
param_shapes with static (i.e. TensorShape) shapes.
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution so that a particular shape is
returned for that instance's call to sample(). Assumes that the sample's
shape is known statically.
Subclasses should override class method _param_shapes to return
constant-valued tensors when constant values are fed.
Args:
sample_shape:TensorShapeor python list/tuple. Desired shape of a call tosample().
Returns:
dict of parameter name to TensorShape.
Raises:
ValueError: ifsample_shapeis aTensorShapeand is not fully defined.
tf.contrib.distributions.RelaxedBernoulli.prob
prob(
value,
name='prob'
)
Probability density/mass function.
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
prob: aTensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype.
tf.contrib.distributions.RelaxedBernoulli.quantile
quantile(
value,
name='quantile'
)
Quantile function. Aka "inverse cdf" or "percent point function".
Given random variable X and p in [0, 1], the quantile is:
quantile(p) := x such that P[X <= x] == p
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
quantile: aTensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype.
tf.contrib.distributions.RelaxedBernoulli.sample
sample(
sample_shape=(),
seed=None,
name='sample'
)
Generate samples of the specified shape.
Note that a call to sample() without arguments will generate a single
sample.
Args:
sample_shape: 0D or 1Dint32Tensor. Shape of the generated samples.seed: Python integer seed for RNGname: name to give to the op.
Returns:
samples: aTensorwith prepended dimensionssample_shape.
tf.contrib.distributions.RelaxedBernoulli.stddev
stddev(name='stddev')
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape.
Args:
name: Pythonstrprepended to names of ops created by this function.
Returns:
stddev: Floating-pointTensorwith shape identical tobatch_shape + event_shape, i.e., the same shape asself.mean().
tf.contrib.distributions.RelaxedBernoulli.survival_function
survival_function(
value,
name='survival_function'
)
Survival function.
Given random variable X, the survival function is defined:
survival_function(x) = P[X > x]
= 1 - P[X <= x]
= 1 - cdf(x).
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.
tf.contrib.distributions.RelaxedBernoulli.variance
variance(name='variance')
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape.
Args:
name: Pythonstrprepended to names of ops created by this function.
Returns:
variance: Floating-pointTensorwith shape identical tobatch_shape + event_shape, i.e., the same shape asself.mean().