Defined in tensorflow/contrib/gan/python/eval/__init__.py
.
TFGAN evaluation module.
This module supports techniques such as Inception Score, Frechet Inception distance, and Sliced Wasserstein distance.
Modules
classifier_metrics
module: Model evaluation tools for TFGAN.
eval_utils
module: Utility file for visualizing generated images.
summaries
module: Common TFGAN summaries.
Functions
add_cyclegan_image_summaries(...)
: Adds image summaries for CycleGAN.
add_gan_model_image_summaries(...)
: Adds image summaries for real and fake images.
add_gan_model_summaries(...)
: Adds typical GANModel summaries.
add_image_comparison_summaries(...)
: Adds image summaries to compare triplets of images.
add_regularization_loss_summaries(...)
: Adds summaries for a regularization losses..
add_stargan_image_summaries(...)
: Adds image summaries to see StarGAN image results.
classifier_score(...)
: Classifier score for evaluating a conditional generative model.
classifier_score_from_logits(...)
: Classifier score for evaluating a generative model from logits.
diagonal_only_frechet_classifier_distance_from_activations(...)
: Classifier distance for evaluating a generative model.
frechet_classifier_distance(...)
: Classifier distance for evaluating a generative model.
frechet_classifier_distance_from_activations(...)
: Classifier distance for evaluating a generative model.
get_graph_def_from_disk(...)
: Get a GraphDef proto from a disk location.
get_graph_def_from_resource(...)
: Get a GraphDef proto from within a .par file.
get_graph_def_from_url_tarball(...)
: Get a GraphDef proto from a tarball on the web.
image_grid(...)
: Arrange a minibatch of images into a grid to form a single image.
image_reshaper(...)
: A reshaped summary image.
kernel_classifier_distance(...)
: Kernel "classifier" distance for evaluating a generative model.
kernel_classifier_distance_and_std(...)
: Kernel "classifier" distance for evaluating a generative model.
kernel_classifier_distance_and_std_from_activations(...)
: Kernel "classifier" distance for evaluating a generative model.
kernel_classifier_distance_from_activations(...)
: Kernel "classifier" distance for evaluating a generative model.
mean_only_frechet_classifier_distance_from_activations(...)
: Classifier distance for evaluating a generative model from activations.
preprocess_image(...)
: Prepare a batch of images for evaluation.
run_image_classifier(...)
: Runs a network from a frozen graph.
run_inception(...)
: Run images through a pretrained Inception classifier.
sliced_wasserstein_distance(...)
: Compute the Wasserstein distance between two distributions of images.