tf.contrib.integrate.odeint_fixed(
func,
y0,
t,
dt=None,
method='rk4',
name=None
)
Defined in tensorflow/contrib/integrate/python/ops/odes.py.
ODE integration on a fixed grid (with no step size control).
Useful in certain scenarios to avoid the overhead of adaptive step size control, e.g. when differentiation of the integration result is desired and/or the time grid is known a priori to be sufficient.
Args:
func: Function that maps a Tensor holding the stateyand a scalar Tensortinto a Tensor of state derivatives with respect to time.y0: N-D Tensor giving starting value ofyat time pointt[0].t: 1-D Tensor holding a sequence of time points for which to solve fory. The initial time point should be the first element of this sequence, and each time must be larger than the previous time. May have any floating point dtype.dt: 0-D or 1-D Tensor providing time step suggestion to be used on time integration intervals int. 1-D Tensor should provide values for all intervals, must have 1 less element than that oft. If given a 0-D Tensor, the value is interpreted as time step suggestion same for all intervals. If passed None, then time step is set to be the t[1:] - t[:-1]. Defaults to None. The actual step size is obtained by insuring an integer number of steps per interval, potentially reducing the time step.method: One of 'midpoint' or 'rk4'.name: Optional name for the resulting operation.
Returns:
y: (N+1)-D tensor, where the first dimension corresponds to different time points. Contains the solved value of y for each desired time point int, with the initial valuey0being the first element along the first dimension.
Raises:
ValueError: Upon caller errors.