Aliases:
tf.contrib.layers.conv2dtf.contrib.layers.convolution2d
tf.contrib.layers.conv2d(
inputs,
num_outputs,
kernel_size,
stride=1,
padding='SAME',
data_format=None,
rate=1,
activation_fn=tf.nn.relu,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=tf.zeros_initializer(),
biases_regularizer=None,
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope=None
)
Defined in tensorflow/contrib/layers/python/layers/layers.py.
Adds an N-D convolution followed by an optional batch_norm layer.
It is required that 1 <= N <= 3.
convolution creates a variable called weights, representing the
convolutional kernel, that is convolved (actually cross-correlated) with the
inputs to produce a Tensor of activations. If a normalizer_fn is
provided (such as batch_norm), it is then applied. Otherwise, if
normalizer_fn is None and a biases_initializer is provided then a biases
variable would be created and added the activations. Finally, if
activation_fn is not None, it is applied to the activations as well.
Performs atrous convolution with input stride/dilation rate equal to rate
if a value > 1 for any dimension of rate is specified. In this case
stride values != 1 are not supported.
Args:
inputs: A Tensor of rank N+2 of shape[batch_size] + input_spatial_shape + [in_channels]if data_format does not start with "NC" (default), or[batch_size, in_channels] + input_spatial_shapeif data_format starts with "NC".num_outputs: Integer, the number of output filters.kernel_size: A sequence of N positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.stride: A sequence of N positive integers specifying the stride at which to compute output. Can be a single integer to specify the same value for all spatial dimensions. Specifying anystridevalue != 1 is incompatible with specifying anyratevalue != 1.padding: One of"VALID"or"SAME".data_format: A string or None. Specifies whether the channel dimension of theinputand output is the last dimension (default, or ifdata_formatdoes not start with "NC"), or the second dimension (ifdata_formatstarts with "NC"). For N=1, the valid values are "NWC" (default) and "NCW". For N=2, the valid values are "NHWC" (default) and "NCHW". For N=3, the valid values are "NDHWC" (default) and "NCDHW".rate: A sequence of N positive integers specifying the dilation rate to use for atrous convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying anyratevalue != 1 is incompatible with specifying anystridevalue != 1.activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation.normalizer_fn: Normalization function to use instead ofbiases. Ifnormalizer_fnis provided thenbiases_initializerandbiases_regularizerare ignored andbiasesare not created nor added. default set to None for no normalizer functionnormalizer_params: Normalization function parameters.weights_initializer: An initializer for the weights.weights_regularizer: Optional regularizer for the weights.biases_initializer: An initializer for the biases. If None skip biases.biases_regularizer: Optional regularizer for the biases.reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given.variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collection per variable.outputs_collections: Collection to add the outputs.trainable: IfTruealso add variables to the graph collectionGraphKeys.TRAINABLE_VARIABLES(see tf.Variable).scope: Optional scope forvariable_scope.conv_dims: Optional convolution dimensionality, when set it would use the corresponding convolution (e.g. 2 for Conv 2D, 3 for Conv 3D, ..). When leaved to None it would select the convolution dimensionality based on the input rank (i.e. Conv ND, with N = input_rank - 2).
Returns:
A tensor representing the output of the operation.
Raises:
ValueError: Ifdata_formatis invalid.ValueError: Both 'rate' andstrideare not uniformly 1.