Aliases:
tf.contrib.layers.conv2d_transpose
tf.contrib.layers.convolution2d_transpose
tf.contrib.layers.conv2d_transpose(
inputs,
num_outputs,
kernel_size,
stride=1,
padding='SAME',
data_format=DATA_FORMAT_NHWC,
activation_fn=tf.nn.relu,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=tf.zeros_initializer(),
biases_regularizer=None,
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope=None
)
Defined in tensorflow/contrib/layers/python/layers/layers.py
.
Adds a convolution2d_transpose with an optional batch normalization layer.
The function creates a variable called weights
, representing the
kernel, that is convolved with the input. If normalizer_fn
is None
, a
second variable called 'biases' is added to the result of the operation.
Args:
inputs
: A 4-DTensor
of typefloat
and shape[batch, height, width, in_channels]
forNHWC
data format or[batch, in_channels, height, width]
forNCHW
data format.num_outputs
: Integer, the number of output filters.kernel_size
: A list of length 2 holding the [kernel_height, kernel_width] of of the filters. Can be an int if both values are the same.stride
: A list of length 2: [stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value.padding
: One of 'VALID' or 'SAME'.data_format
: A string.NHWC
(default) andNCHW
are supported.activation_fn
: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation.normalizer_fn
: Normalization function to use instead ofbiases
. Ifnormalizer_fn
is provided thenbiases_initializer
andbiases_regularizer
are ignored andbiases
are not created nor added. default set to None for no normalizer functionnormalizer_params
: Normalization function parameters.weights_initializer
: An initializer for the weights.weights_regularizer
: Optional regularizer for the weights.biases_initializer
: An initializer for the biases. If None skip biases.biases_regularizer
: Optional regularizer for the biases.reuse
: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given.variables_collections
: Optional list of collections for all the variables or a dictionary containing a different list of collection per variable.outputs_collections
: Collection to add the outputs.trainable
: Whether or not the variables should be trainable or not.scope
: Optional scope for variable_scope.
Returns:
A tensor representing the output of the operation.
Raises:
ValueError
: If 'kernel_size' is not a list of length 2.ValueError
: Ifdata_format
is neitherNHWC
norNCHW
.ValueError
: IfC
dimension ofinputs
is None.