Aliases:
tf.contrib.layers.conv3d_transposetf.contrib.layers.convolution3d_transpose
tf.contrib.layers.conv3d_transpose(
inputs,
num_outputs,
kernel_size,
stride=1,
padding='SAME',
data_format=DATA_FORMAT_NDHWC,
activation_fn=tf.nn.relu,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=tf.zeros_initializer(),
biases_regularizer=None,
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope=None
)
Defined in tensorflow/contrib/layers/python/layers/layers.py.
Adds a convolution3d_transpose with an optional batch normalization layer.
The function creates a variable called weights, representing the
kernel, that is convolved with the input. If batch_norm_params is None, a
second variable called 'biases' is added to the result of the operation.
Args:
inputs: A 5-DTensorof typefloatand shape[batch, depth, height, width, in_channels]forNDHWCdata format or[batch, in_channels, depth, height, width]forNCDHWdata format.num_outputs: Integer, the number of output filters.kernel_size: A list of length 3 holding the [kernel_depth, kernel_height, kernel_width] of the filters. Can be an int if both values are the same.stride: A list of length 3: [stride_depth, stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value.padding: One of 'VALID' or 'SAME'.data_format: A string.NDHWC(default) andNCDHWare supported.activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation.normalizer_fn: Normalization function to use instead ofbiases. Ifnormalizer_fnis provided thenbiases_initializerandbiases_regularizerare ignored andbiasesare not created nor added. default set to None for no normalizer functionnormalizer_params: Normalization function parameters.weights_initializer: An initializer for the weights.weights_regularizer: Optional regularizer for the weights.biases_initializer: An initializer for the biases. If None skip biases.biases_regularizer: Optional regularizer for the biases.reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given.variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collection per variable.outputs_collections: Collection to add the outputs.trainable: Whether or not the variables should be trainable or not.scope: Optional scope for variable_scope.
Returns:
A tensor representing the output of the operation.
Raises:
ValueError: If 'kernel_size' is not a list of length 3.ValueError: Ifdata_formatis neitherNDHWCnorNCDHW.ValueError: IfCdimension ofinputsis None.