tf.contrib.layers.embed_sequence(
ids,
vocab_size=None,
embed_dim=None,
unique=False,
initializer=None,
regularizer=None,
trainable=True,
scope=None,
reuse=None
)
Defined in tensorflow/contrib/layers/python/layers/encoders.py.
Maps a sequence of symbols to a sequence of embeddings.
Typical use case would be reusing embeddings between an encoder and decoder.
Args:
ids:[batch_size, doc_length]Tensorof typeint32orint64with symbol ids.vocab_size: Integer number of symbols in vocabulary.embed_dim: Integer number of dimensions for embedding matrix.unique: IfTrue, will first compute the unique set of indices, and then lookup each embedding once, repeating them in the output as needed.initializer: An initializer for the embeddings, ifNonedefault for current scope is used.regularizer: Optional regularizer for the embeddings.trainable: IfTruealso add variables to the graph collectionGraphKeys.TRAINABLE_VARIABLES(seetf.Variable).scope: Optional string specifying the variable scope for the op, required ifreuse=True.reuse: IfTrue, variables inside the op will be reused.
Returns:
Tensor of [batch_size, doc_length, embed_dim] with embedded sequences.
Raises:
ValueError: ifembed_dimorvocab_sizeare not specified whenreuseisNoneorFalse.