Class LinearRegressor
Inherits From: Estimator
Defined in tensorflow/contrib/learn/python/learn/estimators/linear.py.
Linear regressor model.
THIS CLASS IS DEPRECATED. See contrib/learn/README.md for general migration instructions.
Train a linear regression model to predict label value given observation of feature values.
Example:
sparse_column_a = sparse_column_with_hash_bucket(...)
sparse_column_b = sparse_column_with_hash_bucket(...)
sparse_feature_a_x_sparse_feature_b = crossed_column(...)
estimator = LinearRegressor(
feature_columns=[sparse_column_a, sparse_feature_a_x_sparse_feature_b])
# Input builders
def input_fn_train: # returns x, y
...
def input_fn_eval: # returns x, y
...
estimator.fit(input_fn=input_fn_train)
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)
Input of fit and evaluate should have following features,
otherwise there will be a KeyError:
- if
weight_column_nameis notNone: key=weight_column_name, value=aTensor - for column in
feature_columns:- if isinstance(column,
SparseColumn): key=column.name, value=aSparseTensor - if isinstance(column,
WeightedSparseColumn): {key=id column name, value=aSparseTensor, key=weight column name, value=aSparseTensor} - if isinstance(column,
RealValuedColumn): key=column.name, value=aTensor
- if isinstance(column,
__init__
__init__(
feature_columns,
model_dir=None,
weight_column_name=None,
optimizer=None,
gradient_clip_norm=None,
enable_centered_bias=False,
label_dimension=1,
_joint_weights=False,
config=None,
feature_engineering_fn=None
)
Construct a LinearRegressor estimator object.
Args:
feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived fromFeatureColumn.model_dir: Directory to save model parameters, graph, etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model.weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example.optimizer: An instance oftf.Optimizerused to train the model. IfNone, will use an Ftrl optimizer.gradient_clip_norm: Afloat> 0. If provided, gradients are clipped to their global norm with this clipping ratio. Seetf.clip_by_global_normfor more details.enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias.label_dimension: Number of regression targets per example. This is the size of the last dimension of the labels and logitsTensorobjects (typically, these have shape[batch_size, label_dimension])._joint_weights: If True use a single (possibly partitioned) variable to store the weights. It's faster, but requires all feature columns are sparse and have the 'sum' combiner. Incompatible with SDCAOptimizer.config:RunConfigobject to configure the runtime settings.feature_engineering_fn: Feature engineering function. Takes features and labels which are the output ofinput_fnand returns features and labels which will be fed into the model.
Returns:
A LinearRegressor estimator.
Properties
config
model_dir
Returns a path in which the eval process will look for checkpoints.
model_fn
Returns the model_fn which is bound to self.params.
Returns:
The model_fn with the following signature:
def model_fn(features, labels, mode, metrics)
Methods
tf.contrib.learn.LinearRegressor.evaluate
evaluate(
x=None,
y=None,
input_fn=None,
feed_fn=None,
batch_size=None,
steps=None,
metrics=None,
name=None,
checkpoint_path=None,
hooks=None,
log_progress=True
)
See Evaluable. (deprecated arguments)
Raises:
ValueError: If at least one ofxoryis provided, and at least one ofinput_fnorfeed_fnis provided. Or ifmetricsis notNoneordict.
tf.contrib.learn.LinearRegressor.export
export(
export_dir,
input_fn=None,
input_feature_key=None,
use_deprecated_input_fn=True,
signature_fn=None,
default_batch_size=1,
exports_to_keep=None
)
See BaseEstimator.export. (deprecated)
tf.contrib.learn.LinearRegressor.export_savedmodel
export_savedmodel(
export_dir_base,
serving_input_fn,
default_output_alternative_key=None,
assets_extra=None,
as_text=False,
checkpoint_path=None,
graph_rewrite_specs=(GraphRewriteSpec((tag_constants.SERVING,), ()),),
strip_default_attrs=False
)
Exports inference graph as a SavedModel into given dir.
Args:
export_dir_base: A string containing a directory to write the exported graph and checkpoints.serving_input_fn: A function that takes no argument and returns anInputFnOps.default_output_alternative_key: the name of the head to serve when none is specified. Not needed for single-headed models.assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as{'my_asset_file.txt': '/path/to/my_asset_file.txt'}.as_text: whether to write the SavedModel proto in text format.checkpoint_path: The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen.graph_rewrite_specs: an iterable ofGraphRewriteSpec. Each element will produce a separate MetaGraphDef within the exported SavedModel, tagged and rewritten as specified. Defaults to a single entry using the default serving tag ("serve") and no rewriting.strip_default_attrs: Boolean. IfTrue, default-valued attributes will be removed from the NodeDefs. For a detailed guide, see Stripping Default-Valued Attributes.
Returns:
The string path to the exported directory.
Raises:
ValueError: if an unrecognized export_type is requested.
tf.contrib.learn.LinearRegressor.fit
fit(
x=None,
y=None,
input_fn=None,
steps=None,
batch_size=None,
monitors=None,
max_steps=None
)
See Trainable. (deprecated arguments)
Raises:
ValueError: Ifxoryare notNonewhileinput_fnis notNone.ValueError: If bothstepsandmax_stepsare notNone.
tf.contrib.learn.LinearRegressor.get_params
get_params(deep=True)
Get parameters for this estimator.
Args:
deep: boolean, optionalIf
True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns:
params: mapping of string to any Parameter names mapped to their values.
tf.contrib.learn.LinearRegressor.get_variable_names
get_variable_names()
Returns list of all variable names in this model.
Returns:
List of names.
tf.contrib.learn.LinearRegressor.get_variable_value
get_variable_value(name)
Returns value of the variable given by name.
Args:
name: string, name of the tensor.
Returns:
Numpy array - value of the tensor.
tf.contrib.learn.LinearRegressor.partial_fit
partial_fit(
x=None,
y=None,
input_fn=None,
steps=1,
batch_size=None,
monitors=None
)
Incremental fit on a batch of samples. (deprecated arguments)
This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training.
This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts.
Args:
x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set,input_fnmust beNone.y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of labels. The training label values (class labels in classification, real numbers in regression). If set,input_fnmust beNone.input_fn: Input function. If set,x,y, andbatch_sizemust beNone.steps: Number of steps for which to train model. IfNone, train forever.batch_size: minibatch size to use on the input, defaults to first dimension ofx. Must beNoneifinput_fnis provided.monitors: List ofBaseMonitorsubclass instances. Used for callbacks inside the training loop.
Returns:
self, for chaining.
Raises:
ValueError: If at least one ofxandyis provided, andinput_fnis provided.
tf.contrib.learn.LinearRegressor.predict
predict(
x=None,
input_fn=None,
batch_size=None,
outputs=None,
as_iterable=True
)
Returns predictions for given features. (deprecated argument values) (deprecated argument values)
By default, returns predicted scores. But this default will be dropped
soon. Users should either pass outputs, or call predict_scores method.
Args:
x: features.input_fn: Input function. If set, x must be None.batch_size: Override default batch size.outputs: list ofstr, name of the output to predict. IfNone, returns scores.as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features).
Returns:
Numpy array of predicted scores (or an iterable of predicted scores if
as_iterable is True). If label_dimension == 1, the shape of the output
is [batch_size], otherwise the shape is [batch_size, label_dimension].
If outputs is set, returns a dict of predictions.
tf.contrib.learn.LinearRegressor.predict_scores
predict_scores(
x=None,
input_fn=None,
batch_size=None,
as_iterable=True
)
Returns predicted scores for given features. (deprecated argument values)
Args:
x: features.input_fn: Input function. If set, x must be None.batch_size: Override default batch size.as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features).
Returns:
Numpy array of predicted scores (or an iterable of predicted scores if
as_iterable is True). If label_dimension == 1, the shape of the output
is [batch_size], otherwise the shape is [batch_size, label_dimension].
tf.contrib.learn.LinearRegressor.set_params
set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it's possible to update each
component of a nested object.
Args:
**params: Parameters.
Returns:
self
Raises:
ValueError: If params contain invalid names.