Class SVM
Inherits From: Estimator
Defined in tensorflow/contrib/learn/python/learn/estimators/svm.py
.
Support Vector Machine (SVM) model for binary classification.
THIS CLASS IS DEPRECATED. See contrib/learn/README.md for general migration instructions.
Currently, only linear SVMs are supported. For the underlying optimization
problem, the SDCAOptimizer
is used. For performance and convergence tuning,
the num_loss_partitions parameter passed to SDCAOptimizer
(see __init__()
method), should be set to (#concurrent train ops per worker) x (#workers). If
num_loss_partitions is larger or equal to this value, convergence is
guaranteed but becomes slower as num_loss_partitions increases. If it is set
to a smaller value, the optimizer is more aggressive in reducing the global
loss but convergence is not guaranteed. The recommended value in an
Estimator
(where there is one process per worker) is the number of workers
running the train steps. It defaults to 1 (single machine).
Example:
real_feature_column = real_valued_column(...)
sparse_feature_column = sparse_column_with_hash_bucket(...)
estimator = SVM(
example_id_column='example_id',
feature_columns=[real_feature_column, sparse_feature_column],
l2_regularization=10.0)
# Input builders
def input_fn_train: # returns x, y
...
def input_fn_eval: # returns x, y
...
estimator.fit(input_fn=input_fn_train)
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)
Input of fit
and evaluate
should have following features, otherwise there
will be a KeyError
:
a feature with key=example_id_column
whose value is a Tensor
of dtype
string.
if weight_column_name
is not None
, a feature with
key=weight_column_name
whose value is a Tensor
.
for each column
in feature_columns
:
- if column
is a SparseColumn
, a feature with key=column.name
whose value
is a SparseTensor
.
- if column
is a RealValuedColumn, a feature with
key=column.namewhose
valueis a
Tensor`.
__init__
__init__(
example_id_column,
feature_columns,
weight_column_name=None,
model_dir=None,
l1_regularization=0.0,
l2_regularization=0.0,
num_loss_partitions=1,
kernels=None,
config=None,
feature_engineering_fn=None
)
Constructs an SVM
estimator object.
Args:
example_id_column
: A string defining the feature column name representing example ids. Used to initialize the underlying optimizer.feature_columns
: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived fromFeatureColumn
.weight_column_name
: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example.model_dir
: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model.l1_regularization
: L1-regularization parameter. Refers to global L1 regularization (across all examples).l2_regularization
: L2-regularization parameter. Refers to global L2 regularization (across all examples).num_loss_partitions
: number of partitions of the (global) loss function optimized by the underlying optimizer (SDCAOptimizer).kernels
: A list of kernels for the SVM. Currently, no kernels are supported. Reserved for future use for non-linear SVMs.config
: RunConfig object to configure the runtime settings.feature_engineering_fn
: Feature engineering function. Takes features and labels which are the output ofinput_fn
and returns features and labels which will be fed into the model.
Raises:
ValueError
: if kernels passed is not None.
Properties
config
model_dir
Returns a path in which the eval process will look for checkpoints.
model_fn
Returns the model_fn which is bound to self.params.
Returns:
The model_fn with the following signature:
def model_fn(features, labels, mode, metrics)
Methods
tf.contrib.learn.SVM.evaluate
evaluate(
x=None,
y=None,
input_fn=None,
feed_fn=None,
batch_size=None,
steps=None,
metrics=None,
name=None,
checkpoint_path=None,
hooks=None,
log_progress=True
)
See Evaluable
. (deprecated arguments)
Raises:
ValueError
: If at least one ofx
ory
is provided, and at least one ofinput_fn
orfeed_fn
is provided. Or ifmetrics
is notNone
ordict
.
tf.contrib.learn.SVM.export
export(
export_dir,
signature_fn=None,
input_fn=None,
default_batch_size=1,
exports_to_keep=None
)
See BaseEstimator.export. (deprecated)
tf.contrib.learn.SVM.export_savedmodel
export_savedmodel(
export_dir_base,
serving_input_fn,
default_output_alternative_key=None,
assets_extra=None,
as_text=False,
checkpoint_path=None,
graph_rewrite_specs=(GraphRewriteSpec((tag_constants.SERVING,), ()),),
strip_default_attrs=False
)
Exports inference graph as a SavedModel into given dir.
Args:
export_dir_base
: A string containing a directory to write the exported graph and checkpoints.serving_input_fn
: A function that takes no argument and returns anInputFnOps
.default_output_alternative_key
: the name of the head to serve when none is specified. Not needed for single-headed models.assets_extra
: A dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as{'my_asset_file.txt': '/path/to/my_asset_file.txt'}
.as_text
: whether to write the SavedModel proto in text format.checkpoint_path
: The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen.graph_rewrite_specs
: an iterable ofGraphRewriteSpec
. Each element will produce a separate MetaGraphDef within the exported SavedModel, tagged and rewritten as specified. Defaults to a single entry using the default serving tag ("serve") and no rewriting.strip_default_attrs
: Boolean. IfTrue
, default-valued attributes will be removed from the NodeDefs. For a detailed guide, see Stripping Default-Valued Attributes.
Returns:
The string path to the exported directory.
Raises:
ValueError
: if an unrecognized export_type is requested.
tf.contrib.learn.SVM.export_with_defaults
export_with_defaults(
export_dir,
signature_fn=None,
input_fn=None,
default_batch_size=1,
exports_to_keep=None
)
Same as BaseEstimator.export, but uses some defaults. (deprecated)
tf.contrib.learn.SVM.fit
fit(
x=None,
y=None,
input_fn=None,
steps=None,
batch_size=None,
monitors=None,
max_steps=None
)
See Trainable
. (deprecated arguments)
Raises:
ValueError
: Ifx
ory
are notNone
whileinput_fn
is notNone
.ValueError
: If bothsteps
andmax_steps
are notNone
.
tf.contrib.learn.SVM.get_params
get_params(deep=True)
Get parameters for this estimator.
Args:
deep
: boolean, optionalIf
True
, will return the parameters for this estimator and contained subobjects that are estimators.
Returns:
params
: mapping of string to any Parameter names mapped to their values.
tf.contrib.learn.SVM.get_variable_names
get_variable_names()
Returns list of all variable names in this model.
Returns:
List of names.
tf.contrib.learn.SVM.get_variable_value
get_variable_value(name)
Returns value of the variable given by name.
Args:
name
: string, name of the tensor.
Returns:
Numpy array - value of the tensor.
tf.contrib.learn.SVM.partial_fit
partial_fit(
x=None,
y=None,
input_fn=None,
steps=1,
batch_size=None,
monitors=None
)
Incremental fit on a batch of samples. (deprecated arguments)
This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training.
This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts.
Args:
x
: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set,input_fn
must beNone
.y
: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of labels. The training label values (class labels in classification, real numbers in regression). If set,input_fn
must beNone
.input_fn
: Input function. If set,x
,y
, andbatch_size
must beNone
.steps
: Number of steps for which to train model. IfNone
, train forever.batch_size
: minibatch size to use on the input, defaults to first dimension ofx
. Must beNone
ifinput_fn
is provided.monitors
: List ofBaseMonitor
subclass instances. Used for callbacks inside the training loop.
Returns:
self
, for chaining.
Raises:
ValueError
: If at least one ofx
andy
is provided, andinput_fn
is provided.
tf.contrib.learn.SVM.predict
predict(
x=None,
input_fn=None,
batch_size=None,
outputs=None,
as_iterable=True,
iterate_batches=False
)
Returns predictions for given features. (deprecated arguments)
Args:
x
: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set,input_fn
must beNone
.input_fn
: Input function. If set,x
and 'batch_size' must beNone
.batch_size
: Override default batch size. If set, 'input_fn' must be 'None'.outputs
: list ofstr
, name of the output to predict. IfNone
, returns all.as_iterable
: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features).iterate_batches
: If True, yield the whole batch at once instead of decomposing the batch into individual samples. Only relevant when as_iterable is True.
Returns:
A numpy array of predicted classes or regression values if the
constructor's model_fn
returns a Tensor
for predictions
or a dict
of numpy arrays if model_fn
returns a dict
. Returns an iterable of
predictions if as_iterable is True.
Raises:
ValueError
: If x and input_fn are both provided or bothNone
.
tf.contrib.learn.SVM.predict_classes
predict_classes(
x=None,
input_fn=None,
batch_size=None,
as_iterable=True
)
Runs inference to determine the predicted class. (deprecated argument values)
tf.contrib.learn.SVM.predict_proba
predict_proba(
x=None,
input_fn=None,
batch_size=None,
outputs=None,
as_iterable=True
)
Runs inference to determine the class probability predictions. (deprecated argument values)
tf.contrib.learn.SVM.set_params
set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter>
so that it's possible to update each
component of a nested object.
Args:
**params
: Parameters.
Returns:
self
Raises:
ValueError
: If params contain invalid names.