Class MomentumWOptimizer
Inherits From: DecoupledWeightDecayExtension
, MomentumOptimizer
Defined in tensorflow/contrib/opt/python/training/weight_decay_optimizers.py
.
Optimizer that implements the Momentum algorithm with weight_decay.
This is an implementation of the SGDW optimizer described in "Fixing
Weight Decay Regularization in Adam" by Loshchilov & Hutter
(https://arxiv.org/abs/1711.05101)
([pdf])(https://arxiv.org/pdf/1711.05101.pdf).
It computes the update step of train.MomentumOptimizer
and additionally
decays the variable. Note that this is different from adding
L2 regularization on the variables to the loss. Decoupling the weight decay
from other hyperparameters (in particular the learning rate) simplifies
hyperparameter search.
For further information see the documentation of the Momentum Optimizer.
Note that this optimizer can also be instantiated as
extend_with_weight_decay(tf.train.MomentumOptimizer,
weight_decay=weight_decay)
__init__
__init__(
weight_decay,
learning_rate,
momentum,
use_locking=False,
name='MomentumW',
use_nesterov=False
)
Construct a new MomentumW optimizer.
For further information see the documentation of the Momentum Optimizer.
Args:
weight_decay
: ATensor
or a floating point value. The weight decay.learning_rate
: ATensor
or a floating point value. The learning rate.momentum
: ATensor
or a floating point value. The momentum.use_locking
: IfTrue
use locks for update operations.name
: Optional name prefix for the operations created when applying gradients. Defaults to "Momentum".use_nesterov
: IfTrue
use Nesterov Momentum. See Sutskever et al., 2013. This implementation always computes gradients at the value of the variable(s) passed to the optimizer. Using Nesterov Momentum makes the variable(s) track the values calledtheta_t + mu*v_t
in the paper.
Eager Compatibility
When eager execution is enabled, learning_rate, weight_decay and momentum can each be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions.
Methods
tf.contrib.opt.MomentumWOptimizer.apply_gradients
apply_gradients(
grads_and_vars,
global_step=None,
name=None,
decay_var_list=None
)
Apply gradients to variables and decay the variables.
This function is the same as Optimizer.apply_gradients except that it allows to specify the variables that should be decayed using decay_var_list. If decay_var_list is None, all variables in var_list are decayed.
For more information see the documentation of Optimizer.apply_gradients.
Args:
grads_and_vars
: List of (gradient, variable) pairs as returned bycompute_gradients()
.global_step
: OptionalVariable
to increment by one after the variables have been updated.name
: Optional name for the returned operation. Default to the name passed to theOptimizer
constructor.decay_var_list
: Optional list of decay variables.
Returns:
An Operation
that applies the specified gradients. If global_step
was not None, that operation also increments global_step
.
tf.contrib.opt.MomentumWOptimizer.compute_gradients
compute_gradients(
loss,
var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
grad_loss=None
)
Compute gradients of loss
for the variables in var_list
.
This is the first part of minimize()
. It returns a list
of (gradient, variable) pairs where "gradient" is the gradient
for "variable". Note that "gradient" can be a Tensor
, an
IndexedSlices
, or None
if there is no gradient for the
given variable.
Args:
loss
: A Tensor containing the value to minimize or a callable taking no arguments which returns the value to minimize. When eager execution is enabled it must be a callable.var_list
: Optional list or tuple oftf.Variable
to update to minimizeloss
. Defaults to the list of variables collected in the graph under the keyGraphKeys.TRAINABLE_VARIABLES
.gate_gradients
: How to gate the computation of gradients. Can beGATE_NONE
,GATE_OP
, orGATE_GRAPH
.aggregation_method
: Specifies the method used to combine gradient terms. Valid values are defined in the classAggregationMethod
.colocate_gradients_with_ops
: If True, try colocating gradients with the corresponding op.grad_loss
: Optional. ATensor
holding the gradient computed forloss
.
Returns:
A list of (gradient, variable) pairs. Variable is always present, but
gradient can be None
.
Raises:
TypeError
: Ifvar_list
contains anything else thanVariable
objects.ValueError
: If some arguments are invalid.RuntimeError
: If called with eager execution enabled andloss
is not callable.
Eager Compatibility
When eager execution is enabled, gate_gradients
, aggregation_method
,
and colocate_gradients_with_ops
are ignored.
tf.contrib.opt.MomentumWOptimizer.get_name
get_name()
tf.contrib.opt.MomentumWOptimizer.get_slot
get_slot(
var,
name
)
Return a slot named name
created for var
by the Optimizer.
Some Optimizer
subclasses use additional variables. For example
Momentum
and Adagrad
use variables to accumulate updates. This method
gives access to these Variable
objects if for some reason you need them.
Use get_slot_names()
to get the list of slot names created by the
Optimizer
.
Args:
var
: A variable passed tominimize()
orapply_gradients()
.name
: A string.
Returns:
The Variable
for the slot if it was created, None
otherwise.
tf.contrib.opt.MomentumWOptimizer.get_slot_names
get_slot_names()
Return a list of the names of slots created by the Optimizer
.
See get_slot()
.
Returns:
A list of strings.
tf.contrib.opt.MomentumWOptimizer.minimize
minimize(
loss,
global_step=None,
var_list=None,
gate_gradients=optimizer.Optimizer.GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
name=None,
grad_loss=None,
decay_var_list=None
)
Add operations to minimize loss
by updating var_list
with decay.
This function is the same as Optimizer.minimize except that it allows to specify the variables that should be decayed using decay_var_list. If decay_var_list is None, all variables in var_list are decayed.
For more information see the documentation of Optimizer.minimize.
Args:
loss
: ATensor
containing the value to minimize.global_step
: OptionalVariable
to increment by one after the variables have been updated.var_list
: Optional list or tuple ofVariable
objects to update to minimizeloss
. Defaults to the list of variables collected in the graph under the keyGraphKeys.TRAINABLE_VARIABLES
.gate_gradients
: How to gate the computation of gradients. Can beGATE_NONE
,GATE_OP
, orGATE_GRAPH
.aggregation_method
: Specifies the method used to combine gradient terms. Valid values are defined in the classAggregationMethod
.colocate_gradients_with_ops
: If True, try colocating gradients with the corresponding op.name
: Optional name for the returned operation.grad_loss
: Optional. ATensor
holding the gradient computed forloss
.decay_var_list
: Optional list of decay variables.
Returns:
An Operation that updates the variables in var_list
. If global_step
was not None
, that operation also increments global_step
.
tf.contrib.opt.MomentumWOptimizer.variables
variables()
A list of variables which encode the current state of Optimizer
.
Includes slot variables and additional global variables created by the optimizer in the current default graph.
Returns:
A list of variables.