Class MomentumOptimizer
Inherits From: OptimizerV2
Defined in tensorflow/contrib/optimizer_v2/momentum.py.
Optimizer that implements the Momentum algorithm.
Computes (if use_nesterov = False):
accumulation = momentum * accumulation + gradient
variable -= learning_rate * accumulation
Note that in the dense version of this algorithm, accumulation is updated
and applied regardless of a gradient's value, whereas the sparse version (when
the gradient is an IndexedSlices, typically because of tf.gather or an
embedding) only updates variable slices and corresponding accumulation terms
when that part of the variable was used in the forward pass.
__init__
__init__(
learning_rate,
momentum,
use_locking=False,
name='Momentum',
use_nesterov=False
)
Construct a new Momentum optimizer.
Some of the args below are hyperparameters, where a hyperparameter is
defined as a scalar Tensor, a regular Python value or a callable (which
will be evaluated when apply_gradients is called) returning a scalar
Tensor or a Python value.
Args:
learning_rate: A float hyperparameter. The learning rate.momentum: A float hyperparameter. The momentum.use_locking: IfTrueuse locks for update operations.name: Optional name prefix for the operations created when applying gradients. Defaults to "Momentum".use_nesterov: IfTrueuse Nesterov Momentum. See Sutskever et al., 2013. This implementation always computes gradients at the value of the variable(s) passed to the optimizer. Using Nesterov Momentum makes the variable(s) track the values calledtheta_t + mu*v_tin the paper.
Eager Compatibility
When eager execution is enabled, learning_rate and momentum can each be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions.
Methods
tf.contrib.optimizer_v2.MomentumOptimizer.apply_gradients
apply_gradients(
grads_and_vars,
global_step=None,
name=None
)
Apply gradients to variables.
This is the second part of minimize(). It returns an Operation that
applies gradients.
Args:
grads_and_vars: List of (gradient, variable) pairs as returned bycompute_gradients().global_step: OptionalVariableto increment by one after the variables have been updated.name: Optional name for the returned operation. Default to the name passed to theOptimizerconstructor.
Returns:
An Operation that applies the specified gradients. If global_step
was not None, that operation also increments global_step.
Raises:
TypeError: Ifgrads_and_varsis malformed.ValueError: If none of the variables have gradients.
tf.contrib.optimizer_v2.MomentumOptimizer.compute_gradients
compute_gradients(
loss,
var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
grad_loss=None,
stop_gradients=None,
scale_loss_by_num_replicas=None
)
Compute gradients of loss for the variables in var_list.
This is the first part of minimize(). It returns a list
of (gradient, variable) pairs where "gradient" is the gradient
for "variable". Note that "gradient" can be a Tensor, an
IndexedSlices, or None if there is no gradient for the
given variable.
Args:
loss: A Tensor containing the value to minimize or a callable taking no arguments which returns the value to minimize. When eager execution is enabled it must be a callable.var_list: Optional list or tuple oftf.Variableto update to minimizeloss. Defaults to the list of variables collected in the graph under the keyGraphKeys.TRAINABLE_VARIABLES.gate_gradients: How to gate the computation of gradients. Can beGATE_NONE,GATE_OP, orGATE_GRAPH.aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the classAggregationMethod.grad_loss: Optional. ATensorholding the gradient computed forloss.stop_gradients: Optional. A Tensor or list of tensors not to differentiate through.scale_loss_by_num_replicas: Optional boolean. If true, scale the loss down by the number of replicas. By default, auto-detects whether this is needed.
Returns:
A list of (gradient, variable) pairs. Variable is always present, but
gradient can be None.
Raises:
TypeError: Ifvar_listcontains anything else thanVariableobjects.ValueError: If some arguments are invalid.RuntimeError: If called with eager execution enabled andlossis not callable.
Eager Compatibility
When eager execution is enabled, gate_gradients, and aggregation_method
are ignored.
tf.contrib.optimizer_v2.MomentumOptimizer.get_name
get_name()
tf.contrib.optimizer_v2.MomentumOptimizer.get_slot
get_slot(
var,
name
)
Return a slot named name created for var by the Optimizer.
Some Optimizer subclasses use additional variables. For example
Momentum and Adagrad use variables to accumulate updates. This method
gives access to these Variable objects if for some reason you need them.
Use get_slot_names() to get the list of slot names created by the
Optimizer.
Args:
var: A variable passed tominimize()orapply_gradients().name: A string.
Returns:
The Variable for the slot if it was created, None otherwise.
tf.contrib.optimizer_v2.MomentumOptimizer.get_slot_names
get_slot_names()
Return a list of the names of slots created by the Optimizer.
See get_slot().
Returns:
A list of strings.
tf.contrib.optimizer_v2.MomentumOptimizer.minimize
minimize(
loss,
global_step=None,
var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
name=None,
grad_loss=None,
stop_gradients=None,
scale_loss_by_num_replicas=None
)
Add operations to minimize loss by updating var_list.
This method simply combines calls compute_gradients() and
apply_gradients(). If you want to process the gradient before applying
them call compute_gradients() and apply_gradients() explicitly instead
of using this function.
Args:
loss: ATensorcontaining the value to minimize.global_step: OptionalVariableto increment by one after the variables have been updated.var_list: Optional list or tuple ofVariableobjects to update to minimizeloss. Defaults to the list of variables collected in the graph under the keyGraphKeys.TRAINABLE_VARIABLES.gate_gradients: How to gate the computation of gradients. Can beGATE_NONE,GATE_OP, orGATE_GRAPH.aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the classAggregationMethod.name: Optional name for the returned operation.grad_loss: Optional. ATensorholding the gradient computed forloss.stop_gradients: Optional. A Tensor or list of tensors not to differentiate through.scale_loss_by_num_replicas: Optional boolean. If true, scale the loss down by the number of replicas. By default, auto-detects whether this is needed.
Returns:
An Operation that updates the variables in var_list. If global_step
was not None, that operation also increments global_step.
Raises:
ValueError: If some of the variables are notVariableobjects.
Eager Compatibility
When eager execution is enabled, loss should be a Python function that
takes elements of var_list as arguments and computes the value to be
minimized. If var_list is None, loss should take no arguments.
Minimization (and gradient computation) is done with respect to the
elements of var_list if not None, else with respect to any trainable
variables created during the execution of the loss function.
gate_gradients, aggregation_method, and grad_loss are ignored when
eager execution is enabled.
tf.contrib.optimizer_v2.MomentumOptimizer.variables
variables()
A list of variables which encode the current state of Optimizer.
Includes slot variables and additional global variables created by the optimizer in the current default graph.
Returns:
A list of variables.