Class CrossShardOptimizer
Inherits From: Optimizer
Defined in tensorflow/contrib/tpu/python/tpu/tpu_optimizer.py
.
An optimizer that averages gradients across TPU shards.
__init__
__init__(
opt,
reduction=losses.Reduction.MEAN,
name='CrossShardOptimizer',
group_assignment=None
)
Construct a new cross-shard optimizer.
Args:
opt
: An existingOptimizer
to encapsulate.reduction
: The reduction to apply to the shard losses.name
: Optional name prefix for the operations created when applying gradients. Defaults to "CrossShardOptimizer".group_assignment
: Optional 2d int32 lists with shape [num_groups, num_replicas_per_group] which describles how to apply optimizer to subgroups.
Raises:
ValueError
: If reduction is not a valid cross-shard reduction.
Methods
tf.contrib.tpu.CrossShardOptimizer.apply_gradients
apply_gradients(
grads_and_vars,
global_step=None,
name=None
)
Apply gradients to variables.
Calls tpu_ops.cross_replica_sum() to sum gradient contributions across replicas, and then applies the real optimizer.
Args:
grads_and_vars
: List of (gradient, variable) pairs as returned by compute_gradients().global_step
: Optional Variable to increment by one after the variables have been updated.name
: Optional name for the returned operation. Default to the name passed to the Optimizer constructor.
Returns:
An Operation
that applies the gradients. If global_step
was not None,
that operation also increments global_step
.
Raises:
ValueError
: If the grads_and_vars is malformed.
tf.contrib.tpu.CrossShardOptimizer.compute_gradients
compute_gradients(
loss,
var_list=None,
**kwargs
)
Compute gradients of "loss" for the variables in "var_list".
This simply wraps the compute_gradients() from the real optimizer. The gradients will be aggregated in the apply_gradients() so that user can modify the gradients like clipping with per replica global norm if needed. The global norm with aggregated gradients can be bad as one replica's huge gradients can hurt the gradients from other replicas.
Args:
loss
: A Tensor containing the value to minimize.var_list
: Optional list or tuple oftf.Variable
to update to minimizeloss
. Defaults to the list of variables collected in the graph under the keyGraphKey.TRAINABLE_VARIABLES
.**kwargs
: Keyword arguments for compute_gradients().
Returns:
A list of (gradient, variable) pairs.
Raises:
ValueError
: If not within a tpu_shard_context or group_assignment is invalid.
tf.contrib.tpu.CrossShardOptimizer.get_name
get_name()
tf.contrib.tpu.CrossShardOptimizer.get_slot
get_slot(
*args,
**kwargs
)
Return a slot named "name" created for "var" by the Optimizer.
This simply wraps the get_slot() from the actual optimizer.
Args:
*args
: Arguments for get_slot().**kwargs
: Keyword arguments for get_slot().
Returns:
The Variable
for the slot if it was created, None
otherwise.
tf.contrib.tpu.CrossShardOptimizer.get_slot_names
get_slot_names(
*args,
**kwargs
)
Return a list of the names of slots created by the Optimizer
.
This simply wraps the get_slot_names() from the actual optimizer.
Args:
*args
: Arguments for get_slot().**kwargs
: Keyword arguments for get_slot().
Returns:
A list of strings.
tf.contrib.tpu.CrossShardOptimizer.minimize
minimize(
loss,
global_step=None,
var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
name=None,
grad_loss=None
)
Add operations to minimize loss
by updating var_list
.
This method simply combines calls compute_gradients()
and
apply_gradients()
. If you want to process the gradient before applying
them call compute_gradients()
and apply_gradients()
explicitly instead
of using this function.
Args:
loss
: ATensor
containing the value to minimize.global_step
: OptionalVariable
to increment by one after the variables have been updated.var_list
: Optional list or tuple ofVariable
objects to update to minimizeloss
. Defaults to the list of variables collected in the graph under the keyGraphKeys.TRAINABLE_VARIABLES
.gate_gradients
: How to gate the computation of gradients. Can beGATE_NONE
,GATE_OP
, orGATE_GRAPH
.aggregation_method
: Specifies the method used to combine gradient terms. Valid values are defined in the classAggregationMethod
.colocate_gradients_with_ops
: If True, try colocating gradients with the corresponding op.name
: Optional name for the returned operation.grad_loss
: Optional. ATensor
holding the gradient computed forloss
.
Returns:
An Operation that updates the variables in var_list
. If global_step
was not None
, that operation also increments global_step
.
Raises:
ValueError
: If some of the variables are notVariable
objects.
Eager Compatibility
When eager execution is enabled, loss
should be a Python function that
takes no arguments and computes the value to be minimized. Minimization (and
gradient computation) is done with respect to the elements of var_list
if
not None, else with respect to any trainable variables created during the
execution of the loss
function. gate_gradients
, aggregation_method
,
colocate_gradients_with_ops
and grad_loss
are ignored when eager
execution is enabled.
tf.contrib.tpu.CrossShardOptimizer.variables
variables()
Forwarding the variables from the underlying optimizer.