Class Options
Defined in tensorflow/python/data/ops/dataset_ops.py
.
Represents options for tf.data.Dataset.
An Options
object can be, for instance, used to control which static
optimizations to apply or whether to use performance modeling to dynamically
tune the parallelism of operations such as tf.data.Dataset.map
or
tf.data.Dataset.interleave
.
__init__
__init__()
Initialize self. See help(type(self)) for accurate signature.
Properties
experimental_autotune
Whether to dynamically adjust the values of tunable parameters (e.g. degrees of parallelism). If None, defaults to True.
experimental_deterministic
Whether the outputs need to be produced in deterministic order. If None, defaults to True.
experimental_numa_aware
Whether to use NUMA-aware operations. If None, defaults to False.
experimental_optimization
The optimization options associated with the dataset. See tf.data.experimental.OptimizationOptions
for more details.
experimental_stats
The statistics options associated with the dataset. See tf.data.experimental.StatsOptions
for more details.
experimental_threading
The threading options associated with the dataset. See tf.data.experimental.ThreadingOptions
for more details.
Methods
tf.data.Options.__eq__
__eq__(other)
Return self==value.
tf.data.Options.__ne__
__ne__(other)
Return self!=value.
tf.data.Options.__setattr__
__setattr__(
name,
value
)
Implement setattr(self, name, value).
tf.data.Options.merge
merge(options)
Merges itself with the given tf.data.Options
.
The given tf.data.Options
can be merged as long as there does not exist an
attribute that is set to different values in self
and options
.
Args:
options
: atf.data.Options
to merge with
Raises:
ValueError
: if the giventf.data.Options
cannot be merged
Returns:
New tf.data.Options()
object which is the result of merging self with
the input tf.data.Options
.