Defined in tensorflow/_api/v1/data/experimental/__init__.py
.
Experimental API for building input pipelines.
This module contains experimental Dataset
sources and transformations that can
be used in conjunction with the tf.data.Dataset
API. Note that the
tf.data.experimental
API is not subject to the same backwards compatibility
guarantees as tf.data
, but we will provide deprecation advice in advance of
removing existing functionality.
See Importing Data for an overview.
Classes
class CheckpointInputPipelineHook
: Checkpoints input pipeline state every N steps or seconds.
class CsvDataset
: A Dataset comprising lines from one or more CSV files.
class DatasetStructure
: Represents a Dataset
of structured values.
class NestedStructure
: Represents a nested structure in which each leaf is a Structure
.
class OptimizationOptions
: Represents options for dataset optimizations.
class Optional
: Wraps a nested structure of tensors that may/may not be present at runtime.
class OptionalStructure
: Represents an optional potentially containing a structured value.
class RandomDataset
: A Dataset
of pseudorandom values.
class Reducer
: A reducer is used for reducing a set of elements.
class SparseTensorStructure
: Represents structural information about a tf.SparseTensor
.
class SqlDataset
: A Dataset
consisting of the results from a SQL query.
class StatsAggregator
: A stateful resource that aggregates statistics from one or more iterators.
class StatsOptions
: Represents options for collecting dataset stats using StatsAggregator
.
class Structure
: Represents structural information, such as type and shape, about a value.
class TFRecordWriter
: Writes data to a TFRecord file.
class TensorStructure
: Represents structural information about a tf.Tensor
.
class ThreadingOptions
: Represents options for dataset threading.
Functions
Counter(...)
: Creates a Dataset
that counts from start
in steps of size step
.
bucket_by_sequence_length(...)
: A transformation that buckets elements in a Dataset
by length.
cardinality(...)
: Returns the cardinality of dataset
, if known.
choose_from_datasets(...)
: Creates a dataset that deterministically chooses elements from datasets
.
copy_to_device(...)
: A transformation that copies dataset elements to the given target_device
.
dense_to_sparse_batch(...)
: A transformation that batches ragged elements into tf.SparseTensor
s.
enumerate_dataset(...)
: A transformation that enumerates the elements of a dataset.
filter_for_shard(...)
: Creates a Dataset
that includes only 1/num_shards
of this dataset.
get_next_as_optional(...)
: Returns an Optional
that contains the next value from the iterator.
get_single_element(...)
: Returns the single element in dataset
as a nested structure of tensors.
group_by_reducer(...)
: A transformation that groups elements and performs a reduction.
group_by_window(...)
: A transformation that groups windows of elements by key and reduces them.
ignore_errors(...)
: Creates a Dataset
from another Dataset
and silently ignores any errors.
latency_stats(...)
: Records the latency of producing each element of the input dataset.
make_batched_features_dataset(...)
make_csv_dataset(...)
: Reads CSV files into a dataset.
make_saveable_from_iterator(...)
: Returns a SaveableObject for saving/restore iterator state using Saver.
map_and_batch(...)
: Fused implementation of map
and batch
.
parallel_interleave(...)
: A parallel version of the Dataset.interleave()
transformation.
parse_example_dataset(...)
: A transformation that parses Example
protos into a dict
of tensors.
prefetch_to_device(...)
: A transformation that prefetches dataset values to the given device
.
rejection_resample(...)
: A transformation that resamples a dataset to achieve a target distribution.
sample_from_datasets(...)
: Samples elements at random from the datasets in datasets
.
scan(...)
: A transformation that scans a function across an input dataset.
shuffle_and_repeat(...)
: Shuffles and repeats a Dataset returning a new permutation for each epoch.
unbatch(...)
: Splits elements of a dataset into multiple elements on the batch dimension.
unique(...)
: Creates a Dataset
from another Dataset
, discarding duplicates.