tf.distributions.DirichletMultinomial

Class DirichletMultinomial

Inherits From: Distribution

Aliases:

  • Class tf.contrib.distributions.DirichletMultinomial
  • Class tf.distributions.DirichletMultinomial

Defined in tensorflow/python/ops/distributions/dirichlet_multinomial.py.

Dirichlet-Multinomial compound distribution.

The Dirichlet-Multinomial distribution is parameterized by a (batch of) length-K concentration vectors (K > 1) and a total_count number of trials, i.e., the number of trials per draw from the DirichletMultinomial. It is defined over a (batch of) length-K vector counts such that tf.reduce_sum(counts, -1) = total_count. The Dirichlet-Multinomial is identically the Beta-Binomial distribution when K = 2.

Mathematical Details

The Dirichlet-Multinomial is a distribution over K-class counts, i.e., a length-K vector of non-negative integer counts = n = [n_0, ..., n_{K-1}].

The probability mass function (pmf) is,

pmf(n; alpha, N) = Beta(alpha + n) / (prod_j n_j!) / Z
Z = Beta(alpha) / N!

where:

  • concentration = alpha = [alpha_0, ..., alpha_{K-1}], alpha_j > 0,
  • total_count = N, N a positive integer,
  • N! is N factorial, and,
  • Beta(x) = prod_j Gamma(x_j) / Gamma(sum_j x_j) is the multivariate beta function, and,
  • Gamma is the gamma function.

Dirichlet-Multinomial is a compound distribution, i.e., its samples are generated as follows.

  1. Choose class probabilities: probs = [p_0,...,p_{K-1}] ~ Dir(concentration)
  2. Draw integers: counts = [n_0,...,n_{K-1}] ~ Multinomial(total_count, probs)

The last concentration dimension parametrizes a single Dirichlet-Multinomial distribution. When calling distribution functions (e.g., dist.prob(counts)), concentration, total_count and counts are broadcast to the same shape. The last dimension of counts corresponds single Dirichlet-Multinomial distributions.

Distribution parameters are automatically broadcast in all functions; see examples for details.

Pitfalls

The number of classes, K, must not exceed: - the largest integer representable by self.dtype, i.e., 2**(mantissa_bits+1) (IEE754), - the maximum Tensor index, i.e., 2**31-1.

In other words,

K <= min(2**31-1, {
  tf.float16: 2**11,
  tf.float32: 2**24,
  tf.float64: 2**53 }[param.dtype])

Examples

alpha = [1., 2., 3.]
n = 2.
dist = DirichletMultinomial(n, alpha)

Creates a 3-class distribution, with the 3rd class is most likely to be drawn. The distribution functions can be evaluated on counts.

# counts same shape as alpha.
counts = [0., 0., 2.]
dist.prob(counts)  # Shape []

# alpha will be broadcast to [[1., 2., 3.], [1., 2., 3.]] to match counts.
counts = [[1., 1., 0.], [1., 0., 1.]]
dist.prob(counts)  # Shape [2]

# alpha will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]]  # Shape [5, 7, 3]
dist.prob(counts)  # Shape [5, 7]

Creates a 2-batch of 3-class distributions.

alpha = [[1., 2., 3.], [4., 5., 6.]]  # Shape [2, 3]
n = [3., 3.]
dist = DirichletMultinomial(n, alpha)

# counts will be broadcast to [[2., 1., 0.], [2., 1., 0.]] to match alpha.
counts = [2., 1., 0.]
dist.prob(counts)  # Shape [2]

__init__

__init__(
    total_count,
    concentration,
    validate_args=False,
    allow_nan_stats=True,
    name='DirichletMultinomial'
)

Initialize a batch of DirichletMultinomial distributions. (deprecated)

Args:

  • total_count: Non-negative floating point tensor, whose dtype is the same as concentration. The shape is broadcastable to [N1,..., Nm] with m >= 0. Defines this as a batch of N1 x ... x Nm different Dirichlet multinomial distributions. Its components should be equal to integer values.
  • concentration: Positive floating point tensor, whose dtype is the same as n with shape broadcastable to [N1,..., Nm, K] m >= 0. Defines this as a batch of N1 x ... x Nm different K class Dirichlet multinomial distributions.
  • validate_args: Python bool, default False. When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs.
  • allow_nan_stats: Python bool, default True. When True, statistics (e.g., mean, mode, variance) use the value "NaN" to indicate the result is undefined. When False, an exception is raised if one or more of the statistic's batch members are undefined.
  • name: Python str name prefixed to Ops created by this class.

Properties

allow_nan_stats

Python bool describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.

Returns:

  • allow_nan_stats: Python bool.

batch_shape

Shape of a single sample from a single event index as a TensorShape.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Returns:

  • batch_shape: TensorShape, possibly unknown.

concentration

Concentration parameter; expected prior counts for that coordinate.

dtype

The DType of Tensors handled by this Distribution.

event_shape

Shape of a single sample from a single batch as a TensorShape.

May be partially defined or unknown.

Returns:

  • event_shape: TensorShape, possibly unknown.

name

Name prepended to all ops created by this Distribution.

parameters

Dictionary of parameters used to instantiate this Distribution.

reparameterization_type

Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances distributions.FULLY_REPARAMETERIZED or distributions.NOT_REPARAMETERIZED.

Returns:

An instance of ReparameterizationType.

total_concentration

Sum of last dim of concentration parameter.

total_count

Number of trials used to construct a sample.

validate_args

Python bool indicating possibly expensive checks are enabled.

Methods

tf.distributions.DirichletMultinomial.batch_shape_tensor

batch_shape_tensor(name='batch_shape_tensor')

Shape of a single sample from a single event index as a 1-D Tensor.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args:

  • name: name to give to the op

Returns:

  • batch_shape: Tensor.

tf.distributions.DirichletMultinomial.cdf

cdf(
    value,
    name='cdf'
)

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.distributions.DirichletMultinomial.copy

copy(**override_parameters_kwargs)

Creates a deep copy of the distribution.

Args:

  • **override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values.

Returns:

  • distribution: A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

tf.distributions.DirichletMultinomial.covariance

covariance(name='covariance')

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]

where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance shall return a (batch of) matrices under some vectorization of the events, i.e.,

Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]

where Cov is a (batch of) k' x k' matrices, 0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Additional documentation from DirichletMultinomial:

The covariance for each batch member is defined as the following:

Var(X_j) = n * alpha_j / alpha_0 * (1 - alpha_j / alpha_0) *
(n + alpha_0) / (1 + alpha_0)

where concentration = alpha and total_concentration = alpha_0 = sum_j alpha_j.

The covariance between elements in a batch is defined as:

Cov(X_i, X_j) = -n * alpha_i * alpha_j / alpha_0 ** 2 *
(n + alpha_0) / (1 + alpha_0)

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • covariance: Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape).

tf.distributions.DirichletMultinomial.cross_entropy

cross_entropy(
    other,
    name='cross_entropy'
)

Computes the (Shannon) cross entropy.

Denote this distribution (self) by P and the other distribution by Q. Assuming P, Q are absolutely continuous with respect to one another and permit densities p(x) dr(x) and q(x) dr(x), (Shanon) cross entropy is defined as:

H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)

where F denotes the support of the random variable X ~ P.

Args:

  • other: tfp.distributions.Distribution instance.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • cross_entropy: self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of (Shanon) cross entropy.

tf.distributions.DirichletMultinomial.entropy

entropy(name='entropy')

Shannon entropy in nats.

tf.distributions.DirichletMultinomial.event_shape_tensor

event_shape_tensor(name='event_shape_tensor')

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

  • name: name to give to the op

Returns:

  • event_shape: Tensor.

tf.distributions.DirichletMultinomial.is_scalar_batch

is_scalar_batch(name='is_scalar_batch')

Indicates that batch_shape == [].

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • is_scalar_batch: bool scalar Tensor.

tf.distributions.DirichletMultinomial.is_scalar_event

is_scalar_event(name='is_scalar_event')

Indicates that event_shape == [].

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • is_scalar_event: bool scalar Tensor.

tf.distributions.DirichletMultinomial.kl_divergence

kl_divergence(
    other,
    name='kl_divergence'
)

Computes the Kullback--Leibler divergence.

Denote this distribution (self) by p and the other distribution by q. Assuming p, q are absolutely continuous with respect to reference measure r, the KL divergence is defined as:

KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]

where F denotes the support of the random variable X ~ p, H[., .] denotes (Shanon) cross entropy, and H[.] denotes (Shanon) entropy.

Args:

  • other: tfp.distributions.Distribution instance.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • kl_divergence: self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of the Kullback-Leibler divergence.

tf.distributions.DirichletMultinomial.log_cdf

log_cdf(
    value,
    name='log_cdf'
)

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[ P[X <= x] ]

Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.distributions.DirichletMultinomial.log_prob

log_prob(
    value,
    name='log_prob'
)

Log probability density/mass function.

Additional documentation from DirichletMultinomial:

For each batch of counts, value = [n_0, ..., n_{K-1}], P[value] is the probability that after sampling self.total_count draws from this Dirichlet-Multinomial distribution, the number of draws falling in class j is n_j. Since this definition is exchangeable; different sequences have the same counts so the probability includes a combinatorial coefficient.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.distributions.DirichletMultinomial.log_survival_function

log_survival_function(
    value,
    name='log_survival_function'
)

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.distributions.DirichletMultinomial.mean

mean(name='mean')

Mean.

tf.distributions.DirichletMultinomial.mode

mode(name='mode')

Mode.

tf.distributions.DirichletMultinomial.param_shapes

param_shapes(
    cls,
    sample_shape,
    name='DistributionParamShapes'
)

Shapes of parameters given the desired shape of a call to sample().

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample().

Subclasses should override class method _param_shapes.

Args:

  • sample_shape: Tensor or python list/tuple. Desired shape of a call to sample().
  • name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.distributions.DirichletMultinomial.param_static_shapes

param_static_shapes(
    cls,
    sample_shape
)

param_shapes with static (i.e. TensorShape) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample(). Assumes that the sample's shape is known statically.

Subclasses should override class method _param_shapes to return constant-valued tensors when constant values are fed.

Args:

  • sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

  • ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.distributions.DirichletMultinomial.prob

prob(
    value,
    name='prob'
)

Probability density/mass function.

Additional documentation from DirichletMultinomial:

For each batch of counts, value = [n_0, ..., n_{K-1}], P[value] is the probability that after sampling self.total_count draws from this Dirichlet-Multinomial distribution, the number of draws falling in class j is n_j. Since this definition is exchangeable; different sequences have the same counts so the probability includes a combinatorial coefficient.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.distributions.DirichletMultinomial.quantile

quantile(
    value,
    name='quantile'
)

Quantile function. Aka "inverse cdf" or "percent point function".

Given random variable X and p in [0, 1], the quantile is:

quantile(p) := x such that P[X <= x] == p

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • quantile: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.distributions.DirichletMultinomial.sample

sample(
    sample_shape=(),
    seed=None,
    name='sample'
)

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single sample.

Args:

  • sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.
  • seed: Python integer seed for RNG
  • name: name to give to the op.

Returns:

  • samples: a Tensor with prepended dimensions sample_shape.

tf.distributions.DirichletMultinomial.stddev

stddev(name='stddev')

Standard deviation.

Standard deviation is defined as,

stddev = E[(X - E[X])**2]**0.5

where X is the random variable associated with this distribution, E denotes expectation, and stddev.shape = batch_shape + event_shape.

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • stddev: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

tf.distributions.DirichletMultinomial.survival_function

survival_function(
    value,
    name='survival_function'
)

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.distributions.DirichletMultinomial.variance

variance(name='variance')

Variance.

Variance is defined as,

Var = E[(X - E[X])**2]

where X is the random variable associated with this distribution, E denotes expectation, and Var.shape = batch_shape + event_shape.

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • variance: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().