Class Distribution
Aliases:
- Class
tf.contrib.distributions.Distribution - Class
tf.distributions.Distribution
Defined in tensorflow/python/ops/distributions/distribution.py.
A generic probability distribution base class.
Distribution is a base class for constructing and organizing properties
(e.g., mean, variance) of random variables (e.g, Bernoulli, Gaussian).
Subclassing
Subclasses are expected to implement a leading-underscore version of the
same-named function. The argument signature should be identical except for
the omission of name="...". For example, to enable log_prob(value,
name="log_prob") a subclass should implement _log_prob(value).
Subclasses can append to public-level docstrings by providing docstrings for their method specializations. For example:
@util.AppendDocstring("Some other details.")
def _log_prob(self, value):
...
would add the string "Some other details." to the log_prob function
docstring. This is implemented as a simple decorator to avoid python
linter complaining about missing Args/Returns/Raises sections in the
partial docstrings.
Broadcasting, batching, and shapes
All distributions support batches of independent distributions of that type. The batch shape is determined by broadcasting together the parameters.
The shape of arguments to __init__, cdf, log_cdf, prob, and
log_prob reflect this broadcasting, as does the return value of sample and
sample_n.
sample_n_shape = [n] + batch_shape + event_shape, where sample_n_shape is
the shape of the Tensor returned from sample_n, n is the number of
samples, batch_shape defines how many independent distributions there are,
and event_shape defines the shape of samples from each of those independent
distributions. Samples are independent along the batch_shape dimensions, but
not necessarily so along the event_shape dimensions (depending on the
particulars of the underlying distribution).
Using the Uniform distribution as an example:
minval = 3.0
maxval = [[4.0, 6.0],
[10.0, 12.0]]
# Broadcasting:
# This instance represents 4 Uniform distributions. Each has a lower bound at
# 3.0 as the `minval` parameter was broadcasted to match `maxval`'s shape.
u = Uniform(minval, maxval)
# `event_shape` is `TensorShape([])`.
event_shape = u.event_shape
# `event_shape_t` is a `Tensor` which will evaluate to [].
event_shape_t = u.event_shape_tensor()
# Sampling returns a sample per distribution. `samples` has shape
# [5, 2, 2], which is [n] + batch_shape + event_shape, where n=5,
# batch_shape=[2, 2], and event_shape=[].
samples = u.sample_n(5)
# The broadcasting holds across methods. Here we use `cdf` as an example. The
# same holds for `log_cdf` and the likelihood functions.
# `cum_prob` has shape [2, 2] as the `value` argument was broadcasted to the
# shape of the `Uniform` instance.
cum_prob_broadcast = u.cdf(4.0)
# `cum_prob`'s shape is [2, 2], one per distribution. No broadcasting
# occurred.
cum_prob_per_dist = u.cdf([[4.0, 5.0],
[6.0, 7.0]])
# INVALID as the `value` argument is not broadcastable to the distribution's
# shape.
cum_prob_invalid = u.cdf([4.0, 5.0, 6.0])
Shapes
There are three important concepts associated with TensorFlow Distributions
shapes:
- Event shape describes the shape of a single draw from the distribution;
it may be dependent across dimensions. For scalar distributions, the event
shape is []. For a 5-dimensional MultivariateNormal, the event shape is
[5].
- Batch shape describes independent, not identically distributed draws, aka a
"collection" or "bunch" of distributions.
- Sample shape describes independent, identically distributed draws of batches
from the distribution family.
The event shape and the batch shape are properties of a Distribution object,
whereas the sample shape is associated with a specific call to sample or
log_prob.
For detailed usage examples of TensorFlow Distributions shapes, see this tutorial
Parameter values leading to undefined statistics or distributions.
Some distributions do not have well-defined statistics for all initialization
parameter values. For example, the beta distribution is parameterized by
positive real numbers concentration1 and concentration0, and does not have
well-defined mode if concentration1 < 1 or concentration0 < 1.
The user is given the option of raising an exception or returning NaN.
a = tf.exp(tf.matmul(logits, weights_a))
b = tf.exp(tf.matmul(logits, weights_b))
# Will raise exception if ANY batch member has a < 1 or b < 1.
dist = distributions.beta(a, b, allow_nan_stats=False)
mode = dist.mode().eval()
# Will return NaN for batch members with either a < 1 or b < 1.
dist = distributions.beta(a, b, allow_nan_stats=True) # Default behavior
mode = dist.mode().eval()
In all cases, an exception is raised if invalid parameters are passed, e.g.
# Will raise an exception if any Op is run.
negative_a = -1.0 * a # beta distribution by definition has a > 0.
dist = distributions.beta(negative_a, b, allow_nan_stats=True)
dist.mean().eval()
__init__
__init__(
dtype,
reparameterization_type,
validate_args,
allow_nan_stats,
parameters=None,
graph_parents=None,
name=None
)
Constructs the Distribution. (deprecated)
This is a private method for subclass use.
Args:
dtype: The type of the event samples.Noneimplies no type-enforcement.reparameterization_type: Instance ofReparameterizationType. Ifdistributions.FULLY_REPARAMETERIZED, thisDistributioncan be reparameterized in terms of some standard distribution with a function whose Jacobian is constant for the support of the standard distribution. Ifdistributions.NOT_REPARAMETERIZED, then no such reparameterization is available.validate_args: Pythonbool, defaultFalse. WhenTruedistribution parameters are checked for validity despite possibly degrading runtime performance. WhenFalseinvalid inputs may silently render incorrect outputs.allow_nan_stats: Pythonbool, defaultTrue. WhenTrue, statistics (e.g., mean, mode, variance) use the value "NaN" to indicate the result is undefined. WhenFalse, an exception is raised if one or more of the statistic's batch members are undefined.parameters: Pythondictof parameters used to instantiate thisDistribution.graph_parents: Pythonlistof graph prerequisites of thisDistribution.name: Pythonstrname prefixed to Ops created by this class. Default: subclass name.
Raises:
ValueError: if any member of graph_parents isNoneor not aTensor.
Properties
allow_nan_stats
Python bool describing behavior when a stat is undefined.
Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.
Returns:
allow_nan_stats: Pythonbool.
batch_shape
Shape of a single sample from a single event index as a TensorShape.
May be partially defined or unknown.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Returns:
batch_shape:TensorShape, possibly unknown.
dtype
The DType of Tensors handled by this Distribution.
event_shape
Shape of a single sample from a single batch as a TensorShape.
May be partially defined or unknown.
Returns:
event_shape:TensorShape, possibly unknown.
name
Name prepended to all ops created by this Distribution.
parameters
Dictionary of parameters used to instantiate this Distribution.
reparameterization_type
Describes how samples from the distribution are reparameterized.
Currently this is one of the static instances
distributions.FULLY_REPARAMETERIZED
or distributions.NOT_REPARAMETERIZED.
Returns:
An instance of ReparameterizationType.
validate_args
Python bool indicating possibly expensive checks are enabled.
Methods
tf.distributions.Distribution.batch_shape_tensor
batch_shape_tensor(name='batch_shape_tensor')
Shape of a single sample from a single event index as a 1-D Tensor.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Args:
name: name to give to the op
Returns:
batch_shape:Tensor.
tf.distributions.Distribution.cdf
cdf(
value,
name='cdf'
)
Cumulative distribution function.
Given random variable X, the cumulative distribution function cdf is:
cdf(x) := P[X <= x]
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
cdf: aTensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype.
tf.distributions.Distribution.copy
copy(**override_parameters_kwargs)
Creates a deep copy of the distribution.
Args:
**override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values.
Returns:
distribution: A new instance oftype(self)initialized from the union of self.parameters and override_parameters_kwargs, i.e.,dict(self.parameters, **override_parameters_kwargs).
tf.distributions.Distribution.covariance
covariance(name='covariance')
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k, vector-valued distribution, it is calculated
as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g.,
matrix-valued, Wishart), Covariance shall return a (batch of) matrices
under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov is a (batch of) k' x k' matrices,
0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function
mapping indices of this distribution's event dimensions to indices of a
length-k' vector.
Args:
name: Pythonstrprepended to names of ops created by this function.
Returns:
covariance: Floating-pointTensorwith shape[B1, ..., Bn, k', k']where the firstndimensions are batch coordinates andk' = reduce_prod(self.event_shape).
tf.distributions.Distribution.cross_entropy
cross_entropy(
other,
name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self) by P and the other distribution by
Q. Assuming P, Q are absolutely continuous with respect to
one another and permit densities p(x) dr(x) and q(x) dr(x), (Shanon)
cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F denotes the support of the random variable X ~ P.
Args:
other:tfp.distributions.Distributioninstance.name: Pythonstrprepended to names of ops created by this function.
Returns:
cross_entropy:self.dtypeTensorwith shape[B1, ..., Bn]representingndifferent calculations of (Shanon) cross entropy.
tf.distributions.Distribution.entropy
entropy(name='entropy')
Shannon entropy in nats.
tf.distributions.Distribution.event_shape_tensor
event_shape_tensor(name='event_shape_tensor')
Shape of a single sample from a single batch as a 1-D int32 Tensor.
Args:
name: name to give to the op
Returns:
event_shape:Tensor.
tf.distributions.Distribution.is_scalar_batch
is_scalar_batch(name='is_scalar_batch')
Indicates that batch_shape == [].
Args:
name: Pythonstrprepended to names of ops created by this function.
Returns:
is_scalar_batch:boolscalarTensor.
tf.distributions.Distribution.is_scalar_event
is_scalar_event(name='is_scalar_event')
Indicates that event_shape == [].
Args:
name: Pythonstrprepended to names of ops created by this function.
Returns:
is_scalar_event:boolscalarTensor.
tf.distributions.Distribution.kl_divergence
kl_divergence(
other,
name='kl_divergence'
)
Computes the Kullback--Leibler divergence.
Denote this distribution (self) by p and the other distribution by
q. Assuming p, q are absolutely continuous with respect to reference
measure r, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))]
= -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
= H[p, q] - H[p]
where F denotes the support of the random variable X ~ p, H[., .]
denotes (Shanon) cross entropy, and H[.] denotes (Shanon) entropy.
Args:
other:tfp.distributions.Distributioninstance.name: Pythonstrprepended to names of ops created by this function.
Returns:
kl_divergence:self.dtypeTensorwith shape[B1, ..., Bn]representingndifferent calculations of the Kullback-Leibler divergence.
tf.distributions.Distribution.log_cdf
log_cdf(
value,
name='log_cdf'
)
Log cumulative distribution function.
Given random variable X, the cumulative distribution function cdf is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
logcdf: aTensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype.
tf.distributions.Distribution.log_prob
log_prob(
value,
name='log_prob'
)
Log probability density/mass function.
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
log_prob: aTensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype.
tf.distributions.Distribution.log_survival_function
log_survival_function(
value,
name='log_survival_function'
)
Log survival function.
Given random variable X, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ]
= Log[ 1 - P[X <= x] ]
= Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.
tf.distributions.Distribution.mean
mean(name='mean')
Mean.
tf.distributions.Distribution.mode
mode(name='mode')
Mode.
tf.distributions.Distribution.param_shapes
@classmethod
param_shapes(
cls,
sample_shape,
name='DistributionParamShapes'
)
Shapes of parameters given the desired shape of a call to sample().
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution so that a particular shape is
returned for that instance's call to sample().
Subclasses should override class method _param_shapes.
Args:
sample_shape:Tensoror python list/tuple. Desired shape of a call tosample().name: name to prepend ops with.
Returns:
dict of parameter name to Tensor shapes.
tf.distributions.Distribution.param_static_shapes
@classmethod
param_static_shapes(
cls,
sample_shape
)
param_shapes with static (i.e. TensorShape) shapes.
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution so that a particular shape is
returned for that instance's call to sample(). Assumes that the sample's
shape is known statically.
Subclasses should override class method _param_shapes to return
constant-valued tensors when constant values are fed.
Args:
sample_shape:TensorShapeor python list/tuple. Desired shape of a call tosample().
Returns:
dict of parameter name to TensorShape.
Raises:
ValueError: ifsample_shapeis aTensorShapeand is not fully defined.
tf.distributions.Distribution.prob
prob(
value,
name='prob'
)
Probability density/mass function.
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
prob: aTensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype.
tf.distributions.Distribution.quantile
quantile(
value,
name='quantile'
)
Quantile function. Aka "inverse cdf" or "percent point function".
Given random variable X and p in [0, 1], the quantile is:
quantile(p) := x such that P[X <= x] == p
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
quantile: aTensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype.
tf.distributions.Distribution.sample
sample(
sample_shape=(),
seed=None,
name='sample'
)
Generate samples of the specified shape.
Note that a call to sample() without arguments will generate a single
sample.
Args:
sample_shape: 0D or 1Dint32Tensor. Shape of the generated samples.seed: Python integer seed for RNGname: name to give to the op.
Returns:
samples: aTensorwith prepended dimensionssample_shape.
tf.distributions.Distribution.stddev
stddev(name='stddev')
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape.
Args:
name: Pythonstrprepended to names of ops created by this function.
Returns:
stddev: Floating-pointTensorwith shape identical tobatch_shape + event_shape, i.e., the same shape asself.mean().
tf.distributions.Distribution.survival_function
survival_function(
value,
name='survival_function'
)
Survival function.
Given random variable X, the survival function is defined:
survival_function(x) = P[X > x]
= 1 - P[X <= x]
= 1 - cdf(x).
Args:
value:floatordoubleTensor.name: Pythonstrprepended to names of ops created by this function.
Returns:
Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.
tf.distributions.Distribution.variance
variance(name='variance')
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape.
Args:
name: Pythonstrprepended to names of ops created by this function.
Returns:
variance: Floating-pointTensorwith shape identical tobatch_shape + event_shape, i.e., the same shape asself.mean().