Class CSVLogger
Inherits From: Callback
Defined in tensorflow/python/keras/callbacks.py
.
Callback that streams epoch results to a csv file.
Supports all values that can be represented as a string, including 1D iterables such as np.ndarray.
Example:
csv_logger = CSVLogger('training.log')
model.fit(X_train, Y_train, callbacks=[csv_logger])
Arguments:
filename
: filename of the csv file, e.g. 'run/log.csv'.separator
: string used to separate elements in the csv file.append
: True: append if file exists (useful for continuing training). False: overwrite existing file,
__init__
__init__(
filename,
separator=',',
append=False
)
Initialize self. See help(type(self)) for accurate signature.
Methods
tf.keras.callbacks.CSVLogger.on_batch_begin
on_batch_begin(
batch,
logs=None
)
tf.keras.callbacks.CSVLogger.on_batch_end
on_batch_end(
batch,
logs=None
)
tf.keras.callbacks.CSVLogger.on_epoch_begin
on_epoch_begin(
epoch,
logs=None
)
tf.keras.callbacks.CSVLogger.on_epoch_end
on_epoch_end(
epoch,
logs=None
)
tf.keras.callbacks.CSVLogger.on_train_batch_begin
on_train_batch_begin(
batch,
logs=None
)
tf.keras.callbacks.CSVLogger.on_train_batch_end
on_train_batch_end(
batch,
logs=None
)
tf.keras.callbacks.CSVLogger.on_train_begin
on_train_begin(logs=None)
tf.keras.callbacks.CSVLogger.on_train_end
on_train_end(logs=None)
tf.keras.callbacks.CSVLogger.set_model
set_model(model)
tf.keras.callbacks.CSVLogger.set_params
set_params(params)