Class Constant
Inherits From: Initializer
Aliases:
- Class
tf.constant_initializer
- Class
tf.initializers.constant
- Class
tf.keras.initializers.Constant
- Class
tf.keras.initializers.constant
Defined in tensorflow/python/ops/init_ops.py
.
Initializer that generates tensors with constant values.
The resulting tensor is populated with values of type dtype
, as
specified by arguments value
following the desired shape
of the
new tensor (see examples below).
The argument value
can be a constant value, or a list of values of type
dtype
. If value
is a list, then the length of the list must be less
than or equal to the number of elements implied by the desired shape of the
tensor. In the case where the total number of elements in value
is less
than the number of elements required by the tensor shape, the last element
in value
will be used to fill the remaining entries. If the total number of
elements in value
is greater than the number of elements required by the
tensor shape, the initializer will raise a ValueError
.
Args:
value
: A Python scalar, list or tuple of values, or a N-dimensional numpy array. All elements of the initialized variable will be set to the corresponding value in thevalue
argument.dtype
: Default data type, used if nodtype
argument is provided when calling the initializer.verify_shape
: Boolean that enables verification of the shape ofvalue
. IfTrue
, the initializer will throw an error if the shape ofvalue
is not compatible with the shape of the initialized tensor.
Raises:
TypeError
: If the inputvalue
is not one of the expected types.
Examples:
The following example can be rewritten using a numpy.ndarray instead
of the value
list, even reshaped, as shown in the two commented lines
below the value
list initialization.
>>> import numpy as np
>>> import tensorflow as tf
>>> value = [0, 1, 2, 3, 4, 5, 6, 7]
>>> # value = np.array(value)
>>> # value = value.reshape([2, 4])
>>> init = tf.constant_initializer(value)
>>> print('fitting shape:')
>>> with tf.Session():
>>> x = tf.get_variable('x', shape=[2, 4], initializer=init)
>>> x.initializer.run()
>>> print(x.eval())
fitting shape:
[[ 0. 1. 2. 3.]
[ 4. 5. 6. 7.]]
>>> print('larger shape:')
>>> with tf.Session():
>>> x = tf.get_variable('x', shape=[3, 4], initializer=init)
>>> x.initializer.run()
>>> print(x.eval())
larger shape:
[[ 0. 1. 2. 3.]
[ 4. 5. 6. 7.]
[ 7. 7. 7. 7.]]
>>> print('smaller shape:')
>>> with tf.Session():
>>> x = tf.get_variable('x', shape=[2, 3], initializer=init)
* <b>`ValueError`</b>: Too many elements provided. Needed at most 6, but received 8
>>> print('shape verification:')
>>> init_verify = tf.constant_initializer(value, verify_shape=True)
>>> with tf.Session():
>>> x = tf.get_variable('x', shape=[3, 4], initializer=init_verify)
* <b>`TypeError`</b>: Expected Tensor's shape: (3, 4), got (8,).
__init__
__init__(
value=0,
dtype=tf.dtypes.float32,
verify_shape=False
)
Initialize self. See help(type(self)) for accurate signature.
Methods
tf.keras.initializers.Constant.__call__
__call__(
shape,
dtype=None,
partition_info=None,
verify_shape=None
)
Returns a tensor object initialized as specified by the initializer.
Args:
shape
: Shape of the tensor.dtype
: Optional dtype of the tensor. If not provided use the initializer dtype.partition_info
: Optional information about the possible partitioning of a tensor.
tf.keras.initializers.Constant.from_config
from_config(
cls,
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args:
config
: A Python dictionary. It will typically be the output ofget_config
.
Returns:
An Initializer instance.
tf.keras.initializers.Constant.get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns:
A JSON-serializable Python dict.