Class MeanAbsoluteError
Defined in tensorflow/python/keras/losses.py
.
Computes the mean of absolute difference between labels and predictions.
For example, if y_true
is [0., 0., 1., 1.] and y_pred
is [1., 1., 1., 0.]
then the mean absolute error value is 3/4 (0.75).
Usage:
mae = tf.keras.losses.MeanAbsoluteError()
loss = mae([0., 0., 1., 1.], [1., 1., 1., 0.])
print('Loss: ', loss.numpy()) # Loss: 0.75
Usage with tf.keras API:
model = keras.models.Model(inputs, outputs)
model.compile('sgd', loss=tf.keras.losses.MeanAbsoluteError())
__init__
__init__(
reduction=losses_impl.ReductionV2.SUM_OVER_BATCH_SIZE,
name=None
)
Initialize self. See help(type(self)) for accurate signature.
Methods
tf.keras.losses.MeanAbsoluteError.__call__
__call__(
y_true,
y_pred,
sample_weight=None
)
Invokes the Loss
instance.
Args:
y_true
: Ground truth values.y_pred
: The predicted values.sample_weight
: OptionalTensor
whose rank is either 0, or the same rank asy_true
, or is broadcastable toy_true
.sample_weight
acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. Ifsample_weight
is a tensor of size[batch_size]
, then the total loss for each sample of the batch is rescaled by the corresponding element in thesample_weight
vector. If the shape ofsample_weight
matches the shape ofy_pred
, then the loss of each measurable element ofy_pred
is scaled by the corresponding value ofsample_weight
.
Returns:
Weighted loss float Tensor
. If reduction
is NONE
, this has the same
shape as y_true
; otherwise, it is scalar.
Raises:
ValueError
: If the shape ofsample_weight
is invalid.
tf.keras.losses.MeanAbsoluteError.call
call(
y_true,
y_pred
)
Invokes the MeanAbsoluteError
instance.
Args:
y_true
: Ground truth values.y_pred
: The predicted values.
Returns:
Mean absolute error losses.
tf.keras.losses.MeanAbsoluteError.from_config
from_config(
cls,
config
)
Instantiates a Loss
from its config (output of get_config()
).
Args:
config
: Output ofget_config()
.
Returns:
A Loss
instance.
tf.keras.losses.MeanAbsoluteError.get_config
get_config()