Class MeanSquaredError
Defined in tensorflow/python/keras/losses.py.
Computes the mean of squares of errors between labels and predictions.
For example, if y_true is [0., 0., 1., 1.] and y_pred is [1., 1., 1., 0.]
then the mean squared error value is 3/4 (0.75).
Usage:
mse = tf.keras.losses.MeanSquaredError()
loss = mse([0., 0., 1., 1.], [1., 1., 1., 0.])
print('Loss: ', loss.numpy()) # Loss: 0.75
Usage with tf.keras API:
model = keras.models.Model(inputs, outputs)
model.compile('sgd', loss=tf.keras.losses.MeanSquaredError())
__init__
__init__(
reduction=losses_impl.ReductionV2.SUM_OVER_BATCH_SIZE,
name=None
)
Initialize self. See help(type(self)) for accurate signature.
Methods
tf.keras.losses.MeanSquaredError.__call__
__call__(
y_true,
y_pred,
sample_weight=None
)
Invokes the Loss instance.
Args:
y_true: Ground truth values.y_pred: The predicted values.sample_weight: OptionalTensorwhose rank is either 0, or the same rank asy_true, or is broadcastable toy_true.sample_weightacts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. Ifsample_weightis a tensor of size[batch_size], then the total loss for each sample of the batch is rescaled by the corresponding element in thesample_weightvector. If the shape ofsample_weightmatches the shape ofy_pred, then the loss of each measurable element ofy_predis scaled by the corresponding value ofsample_weight.
Returns:
Weighted loss float Tensor. If reduction is NONE, this has the same
shape as y_true; otherwise, it is scalar.
Raises:
ValueError: If the shape ofsample_weightis invalid.
tf.keras.losses.MeanSquaredError.call
call(
y_true,
y_pred
)
Invokes the MeanSquaredError instance.
Args:
y_true: Ground truth values.y_pred: The predicted values.
Returns:
Mean squared error losses.
tf.keras.losses.MeanSquaredError.from_config
from_config(
cls,
config
)
Instantiates a Loss from its config (output of get_config()).
Args:
config: Output ofget_config().
Returns:
A Loss instance.
tf.keras.losses.MeanSquaredError.get_config
get_config()