Class Adam
Inherits From: Optimizer
Defined in tensorflow/python/keras/optimizers.py
.
Adam optimizer.
Default parameters follow those provided in the original paper.
Arguments:
lr
: float >= 0. Learning rate.beta_1
: float, 0 < beta < 1. Generally close to 1.beta_2
: float, 0 < beta < 1. Generally close to 1.epsilon
: float >= 0. Fuzz factor. IfNone
, defaults toK.epsilon()
.decay
: float >= 0. Learning rate decay over each update.amsgrad
: boolean. Whether to apply the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and Beyond".
__init__
__init__(
lr=0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=None,
decay=0.0,
amsgrad=False,
**kwargs
)
Initialize self. See help(type(self)) for accurate signature.
Methods
tf.keras.optimizers.Adam.from_config
from_config(
cls,
config
)
tf.keras.optimizers.Adam.get_config
get_config()
tf.keras.optimizers.Adam.get_gradients
get_gradients(
loss,
params
)
Returns gradients of loss
with respect to params
.
Arguments:
loss
: Loss tensor.params
: List of variables.
Returns:
List of gradient tensors.
Raises:
ValueError
: In case any gradient cannot be computed (e.g. if gradient function not implemented).
tf.keras.optimizers.Adam.get_updates
get_updates(
loss,
params
)
tf.keras.optimizers.Adam.get_weights
get_weights()
Returns the current value of the weights of the optimizer.
Returns:
A list of numpy arrays.
tf.keras.optimizers.Adam.set_weights
set_weights(weights)
Sets the weights of the optimizer, from Numpy arrays.
Should only be called after computing the gradients (otherwise the optimizer has no weights).
Arguments:
weights
: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the optimizer (i.e. it should match the output ofget_weights
).
Raises:
ValueError
: in case of incompatible weight shapes.