Class RMSprop
Inherits From: Optimizer
Defined in tensorflow/python/keras/optimizers.py.
RMSProp optimizer.
It is recommended to leave the parameters of this optimizer at their default values (except the learning rate, which can be freely tuned).
This optimizer is usually a good choice for recurrent neural networks.
Arguments:
lr: float >= 0. Learning rate.rho: float >= 0.epsilon: float >= 0. Fuzz factor. IfNone, defaults toK.epsilon().decay: float >= 0. Learning rate decay over each update.
__init__
__init__(
lr=0.001,
rho=0.9,
epsilon=None,
decay=0.0,
**kwargs
)
Initialize self. See help(type(self)) for accurate signature.
Methods
tf.keras.optimizers.RMSprop.from_config
from_config(
cls,
config
)
tf.keras.optimizers.RMSprop.get_config
get_config()
tf.keras.optimizers.RMSprop.get_gradients
get_gradients(
loss,
params
)
Returns gradients of loss with respect to params.
Arguments:
loss: Loss tensor.params: List of variables.
Returns:
List of gradient tensors.
Raises:
ValueError: In case any gradient cannot be computed (e.g. if gradient function not implemented).
tf.keras.optimizers.RMSprop.get_updates
get_updates(
loss,
params
)
tf.keras.optimizers.RMSprop.get_weights
get_weights()
Returns the current value of the weights of the optimizer.
Returns:
A list of numpy arrays.
tf.keras.optimizers.RMSprop.set_weights
set_weights(weights)
Sets the weights of the optimizer, from Numpy arrays.
Should only be called after computing the gradients (otherwise the optimizer has no weights).
Arguments:
weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the optimizer (i.e. it should match the output ofget_weights).
Raises:
ValueError: in case of incompatible weight shapes.